با همکاری انجمن اقتصاد کشاورزی ایران

نوع مقاله : مقالات پژوهشی به زبان انگلیسی

نویسندگان

گروه مدیریت و توسعه کشاورزی، دانشگاه تهران، تهران، ایران

چکیده

در دهه‌های اخیر کشت در محیط‌های گلخانه‌ای به‌عنوان یکی از راه‌حل‌های بالقوه جهت افزایش بهره‌وری منابع تولید و پاسخگویی به تقاضای غذایی فزاینده ناشی از رشد جمعیت مورد توجه کشورها قرار گرفته است. بااین‌حال، شکاف عملکردی قابل‌توجهی از نظر شاخص‌های عملکردی گلخانه‌ها نظیر عملکرد محصول، مصرف آب، انرژی و غیره در کشور ایران با کشورهای پیشرو در صنعت تولیدات گلخانه‌ای وجود دارد. یکی از راهکارهای مورد تأکید برای غلبه بر این چالش‌ها و بهینه‌سازی استفاده از منابع تولید، پیاده‌سازی فناوری‌های هوشمند در گلخانه‌ها است. با توجه به عدم توسعه فراگیر فناوری‌های هوشمند در گلخانه‌های استان تهران و اهمیت این استان در تولید محصولات گلخانه‌ای در کشور، مطالعه حاضر با هدف تحلیل توسعه کشاورزی هوشمند در گلخانه‌های استان تهران انجام گرفت. جامعه آماری پژوهش شامل 20 نفر از خبرگان موضوعی دارای سابقه تحقیقاتی یا اجرایی در زمینه هوشمندسازی گلخانه‌ها بودند. انتخاب این افراد نیز به روش هدفمند انجام شد. ابزار جمع‌آوری داده‌ها در این پژوهش مصاحبه نیمه ساختاریافته و پرسشنامه بود. در ابتدا با استفاده از مرور ادبیات موضوع و مصاحبه‌های نیمه‌ ساختارمند با خبرگان موضوعی، متغیرهای عوامل مؤثر بر توسعه کشاورزی هوشمند در گلخانه‌ها (شامل مؤلفه‌ها، الزامات و چالش‌های توسعه کشاورزی هوشمند) شناسایی شدند. سپس، از خبرگان خواسته شد تا اثرات متقاطع، متغیرهای شناسایی شده را از طریق مقایسه زوجی ارزیابی کنند. درنهایت، تجزیه ‌و تحلیل داده‌ها به روش تحلیل اثرات متقابل با استفاده از نرم‌افزار MICMAC انجام شد. بر مبنای تحلیل شبکه روابط اثرگذاری و اثرپذیری به‌ترتیب الزامات و چالش‌های اقتصادی، الزامات و چالش‌های فنی و زیرساختی، الزامات قانونی و مقرراتی و الزامات نهادی به‌عنوان تأثیرگذارترین متغیرهای مؤثر بر توسعه کشاورزی هوشمند در استان تهران شناسایی شدند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Developing Smart Agriculture in Greenhouses of Tehran Province

نویسندگان [English]

  • S. Binaei
  • H. Shabanali Fami
  • K. Kalantari
  • A. Barati

Department of Agricultural Management and Development, Faculty of Agriculture, University of Tehran, Tehran, Iran

چکیده [English]

Food production in controlled cultivation areas plays a crucial role in increasing productivity and offsetting supply shortages. Product yields, water consumption, and energy use are the main parameters determining the performance of food production in a greenhouse. Smart technology is an effective solution to improve these parameters. This study aimed to identify the components, challenges, and requirements for the development of smart agriculture in greenhouses. Our case study focused on Tehran province, which encompasses a significant portion of the total greenhouses in Iran. The statistical population consisted of 20 subject-matter experts with research or executive experience in greenhouse automation, selected purposefully. Questionnaires and semi-structured interviews were used in this study to collect data. First, we identified the variables affecting the development of smart agriculture in greenhouses by using a literature review and semi-structured interviews with experts, Then, the experts were asked to evaluate the cross-influence of the identified variables through pairwise comparison. Finally, data analysis was done using MICMAC software. The findings indicate that the identified requirements and challenges have had a significant influence on the lack of smart agriculture in greenhouses. Through network analysis of influence and dependence relationships, it was found that economic requirements and challenges, technical and infrastructural requirements and challenges, legal and regulatory requirements, and institutional requirements were the most influential variables in the development of smart agriculture in Tehran province.

کلیدواژه‌ها [English]

  • Smart agriculture development
  • Smart greenhouse
  • Smartening challenges
  • Smartening requirements

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abbasi, E. (2015). A Projection of Energy Consumption in Iranian Agriculture Sector. Financial Economics, 9(32), 81-102. (In Persian)
  2. Abbasi, F., Sohrab, F., & Abbasi, N. (2017). Evaluation of irrigation efficiencies in Iran. Irrigation and Drainage Structures Engineering Research, 17(67), 113-120. (In Persian). https://doi.org/10.22092/ aridse.2017.109617.
  3. Abbasi, F., Zarei, Q., J,P., & Momeni, D. (2020). Challenges and priorities to improve productivity in the country's greenhouses (Specialized Working Group on Water, Drought, Erosion and Environment of the Scientific and Technological Vice President, Issue. D. B. Fanawar. (In Persian)
  4. Abdallah, W., Khdair, M., Ayyash, M.A., & Asad, I. (2018). IoT system to control greenhouse agriculture based on the needs of Palestinian farmers. Proceedings of the 2nd International Conference on Future Networks and Distributed Systems.
  5. Agricultural Jihad Organization of Tehran province. (2021). Statistical yearbook of Tehran province. (In Persian). https://amar.thmporg.ir/.
  6. Antony, A.P., Leith, K., Jolley, C., Lu, J., & Sweeney, D.J. (2020). A Review of practice and implementation of the internet of things (IoT) for Smallholder agriculture. Sustainability, 12(9).
  7. Atri, A. (2018). Joint action plan document to increase productivity and intelligence in the agricultural sector through the development and use of information technology (Ministry of Communications and Information Technology, Issue. (In Persian)
  8. Banaeian, M. (2020). Beginning of cucumber and tomato harvest in Varamin. (In Persian). Available at: https://www.irna.ir/news/83817395.
  9. Barati, A.A., Azadi, H., Dehghani Pour, M., Lebailly, P., & Qafori, M. (2019). Determining key agricultural strategic factors using AHP-MICMAC. Sustainability, 11(14).
  10. Caffaro, F., & Cavallo, E. (2020). Perceived barriers to the adoption of smart farming technologies in piedmont region, northwestern Italy: The role of user and farm variables. Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. Cham.
  11. CB (2017). Agriculture; crops, animals, land use, and labor at the national level. Statistics Netherlands,30 June 2017. Reprocessed.
  12. Chuang, J.-H., Wang, J.-H., & Liou, Y.-C. (2020). Farmers’ knowledge, attitude, and adoption of smart agriculture technology in Taiwan. International Journal of Environmental Research and Public Health, 17(19).
  13. de Bourgogne, R.M. (2021). Smart farming technology in Japan and Opportunities for EU companies. ECOS.
  14. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745.
  15. Edwin, C., Anibal, F., & Yessica, S. (2019). Smart farming: A potential solution towards a modern and sustainable agriculture in Panama. AIMS Agriculture and Food, 4(2), 266-284. https://doi.org/10.3934/agrfood.2019.2.266.
  16. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C.Y., & Hindia, M.N. (2018). An overview of internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of Things Journal, 5(5), 3758-3773. https://doi.org/10.1109/JIOT.2018.2844296
  17. Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann Santos, C., & Pekkeriet, E. (2020). Agricultural robotics for field operations. Sensors, 20(9).
  18. Genius, M., Koundouri, P., Nauges, C., & Tzouvelekas, V. (2014). Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. American Journal of Agricultural Economics, 96(1), 328-344.
  19. Ghara Biglo, M., & Zand, A. (2015). Investigating the use of advanced technologies in improving the performance of precision agriculture. The third international conference on modern research in agriculture and environment, https://scholar.conference.ac/index.php/download/file/10299-Investigating-utilization-of-advanced-technology-in-improvement
  20. Godet, M., Durance, P., & Gerber, A. (2008). Strategic foresight la prospective. Cahiers du LIPSOR, 143.
  21. Hatefi, M. (2021). Designing a model for developing controlled environment agricultural system to produce safe vegetables in Tehran & Alborz provincesD. Thesis, University of Tehran.
  22. Jamal, J., Azizi, S., Abdollahpouri, A., Ghaderi, N., Sarabi, B., Silva-Ordaz, A., & Castaño-Meneses, V. M. (2021). Monitoring rocket (Eruca sativa) growth parameters using the Internet of Things under supplemental LED lighting. Sensing and Bio-Sensing Research, 34, 100450. https://doi.org/10.1016/j.sbsr.2021.100450.
  23. Jamil, F., Ibrahim, M., Ullah, I., Kim, S., Kahng, H.K., & Kim, D.-H. (2022). Optimal smart contract for autonomous greenhouse environment based on IoT blockchain network in agriculture. Computers and Electronics in Agriculture, 192, 106573. https://doi.org/10.1016/j.compag.2021.106573
  24. Kang, S. (2019). The Determinants of Automated Greenhouse Adoption in Korea Seoul National University Graduate School.
  25. Lakhwani, K., Gianey, H., Agarwal, N., & Gupta, S. (2019, 2019//). Development of IoT for Smart Agriculture a Review. Emerging Trends in Expert Applications and Security. Singapore.
  26. Maraveas, C., & Bartzanas, T. (2021). Application of Internet of Things (IoT) for Optimized Greenhouse Environments. AgriEngineering, 3(4), 954-970.
  27. Moghaddasi, R., & Anoushe Pour, A. (2016). Energy consumption and total factor productivity growth in Iranian agriculture. Energy Reports, 2, 218-220. https://doi.org/10.1016/j.egyr.2016.08.004.
  28. Morrow, K. (2020). 6 common cannabis greenhouse problems and how to solve them. Available at: https://www.cannabisbusinesstimes.com/article/common-cannabis-greenhouse-problems-how-to-solve-them/.
  29. Mukhopadhyay, S.C., & Suryadevara, N.K. (2014). Internet of things: Challenges and opportunities. Springer International Publishing. https://doi.org/10.1007/978-3-319-04223-7_1
  30. Narwane, V.S., Gunasekaran, A., & Gardas, B.B. (2022). Unlocking adoption challenges of IoT in Indian Agricultural and Food Supply Chain. Smart Agricultural Technology, 2, 100035. https://doi.org/10.1016/j.atech.2022.100035
  31. Naseri, M. (2019). Comparing yield and yield components of garlic (Allium sativum) in greenhouse and field conditions. Greenhouse Vegetables, 2(2), 45-50. (In Persian)
  32. Newcombe, R. (2019). Five common greenhouse growing problems. Available at: http://www.greenhousegrowing.co.uk/common-greenhouse-growing-problems.html
  33. O'Shaughnessy, S.A., Kim, M., Lee, S., Kim, Y., Kim, H., & Shekailo, J. (2021). Towards smart farming solutions in the U.S. and South Korea: A comparison of the current status. Geography and Sustainability, 2(4), 312-327. https://doi.org/10.1016/j.geosus.2021.12.002
  34. Ojha, T., Misra, S., & Raghuwanshi, N.S. (2021). Internet of things for agricultural applications: The state of the art. IEEE Internet of Things Journal, 8(14), 10973-10997. https://doi.org/10.1109/JIOT.2021.3051418
  35. Pivoto, D. (2018). Smart farming: concepts, applications, adoption and diffusion in southern Brazil.
  36. Quy, V.K., Hau, N.V., Anh, D.V., Quy, N.M., Ban, N.T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-enabled smart agriculture: architecture, applications, and challenges. Applied Sciences, 12(7).
  37. Rayhana, R., Xiao, G., & Liu, Z. (2020). Internet of things empowered smart greenhouse farming. IEEE Journal of Radio Frequency Identification, 4(3), 195-211. https://doi.org/10.1109/JRFID.2020.2984391
  38. Rezaei, R., Mohajeri, E., Safa, L., Barzegar, T., & Khosravi, Y. (2023). Qualitative modeling of the problems with value chain of greenhouse crops in Zanjan province. Iranian Agricultural Extension and Education Journal, 18(2), 1-17. (In Persian). http://www.iaeej.ir/article_165549.html
  39. Said Mohamed, E., Belal, A.A., Kotb Abd-Elmabod, S., El-Shirbeny, M.A., Gad, A., & Zahran, M.B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3, Part 2), 971-981. https://doi.org/10.1016/j.ejrs.2021.08.007
  40. Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2).
  41. Sharghi, T., Chardoli, M., & Ahmadi, A. (2020). Designing a model for technical development of greenhouses and analyzing its' influencing factors: The case of Pakdasht county. Iranian Agricultural Extension and Education Journal, 16(2), 181-204. (In Persian). https://doi.org/10.22034/iaeej.2021. 225320.1514
  42. Shekhar, S., Colletti, J., Muñoz-Arriola, F., Ramaswamy, L., Krintz, C., Varshney, L., & Richardson, D. (2017). Intelligent infrastructure for smart agriculture: An integrated food, energy and water system. arXiv preprint arXiv:1705.01993. https://doi.org/10.48550/arXiv.1705.01993
  43. Sontowski, S., Gupta, M., Chukkapalli, S.S.L., Abdelsalam, M., Mittal, S., Joshi, A., & Sandhu, R. (2020). Cyber attacks on smart farming infrastructure. 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC).
  44. Statistical Center of Iran. (2023). Statistical yearbook of the country. (In Persian). https://www.amar.org.ir.
  45. Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the Internet of Things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189, 106352. https://doi.org/10.1016/j.compag.2021.106352
  46. Terence, S., & Purushothaman, G. (2020). A systematic review of the Internet of Things in smart farming. Transactions on Emerging Telecommunications Technologies, 31(6), e3958. https://doi.org/10.1002/ett.3958
  47. Visvesvaran, C., Kamalakannan, S., Kumar, K.N., Sundaram, K.M., Vasan, S.M.S.S., & Jafrrin, S. (2021). Smart greenhouse monitoring system using wireless sensor networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC).
  48. Wang, J., Chen, M., Zhou, J., & Li, P. (2020). Data communication mechanism for greenhouse environment monitoring and control: An agent-based IoT system. Information Processing in Agriculture, 7(3), 444-455. https://doi.org/10.1016/j.inpa.2019.11.002
  49. Watson, R.T., Boudreau, M.-C., & van Iersel, M.W. (2018). Simulation of greenhouse energy use: an application of energy informatics. Energy Informatics, 1(1), 1. https://doi.org/10.1007/s42162-018-0005-7
  50. World Health, O. (2022). The State of Food Security and Nutrition in the World 2022: Repurposing food and agricultural policies to make healthy diets more affordable (Vol. 2022). Food & Agriculture Org.
  51. Zarei, A., & Momeni, D. (2017). The development process of greenhouses in the country (opportunities, challenges, and goals). Technical analysis in Iran's agricultural management and engineering (Vol. 1). Karaj: Publications of Agricultural Engineering and Technical Research Institute. (In Persian)
  52. Zarei, G. (2017). Structural challenges of greenhouses in Iran. Strategic Research Journal of Agricultural Sciences and Natural Resources, 2(2), 149-162. (In Persian). https://srj.asnr.ias.ac.ir/article_110578.html
CAPTCHA Image