بررسی استراتژی‌های تطبیقی برای مدیریت منابع آب کشاورزی تحت تغییر اقلیم در حوضه آبریز رودخانه هلیل‌رود

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دکتری اقتصاد کشاورزی گروه اقتصاد کشاورزی، دانشگاه شیراز

2 استاد گروه اقتصاد کشاورزی، دانشگاه شیراز

چکیده

به دلیل ماهیت چندبعدی و چند مقیاسی مدیریت آب و تغییر اقلیم، به ادغام ابزارهایی برای تحلیل اثرات و سازگاری نیاز است. در این راستا، در مطالعه­ی حاضر به منظور ارزیابی اثرات بالقوه تغییر اقلیم و راهبردهای تطبیقی بر کشاورزی آبی در حوضه رودخانه هلیل­رود از یک مدل با لحاظ مسائل اقتصادی و هیدرولوژیکی استفاده شده است. در این چارچوب، یک مدل بهینه­یابی چندهدفه اقتصادی مزرعه-بنیان با مدل هیدرولوژیکی WEAP تلفیق شده است که می­تواند سیستم‌های اجتماعی-اقتصادی، زراعی و هیدرولوژیکی را به شیوه­ای فضایی و صریح که تمامی ابعاد و مقیاس­های مربوط به تغییر اقلیم را در بر می­گیرد، نشان دهد. برای این منظور تعدادی مزرعه نماینده انتخاب و مدل بهینه­یابی چندهدفه در قالب نرم‌افزار GAMS برای مزارع منتخب اعمال و سپس از نرم‌افزار WEAP و ابزار MABIA برای شبیه­سازی هیدرولوژیکی سطح حوضه بهره گرفته شد. نتایج حاصل از شبیه‌سازی سناریوی تغییر اقلیم A2 و برداشت متوازن آب زیرزمینی (سناریوی ترکیبی) بر وضعیت هیدرولوژیکی و اقتصادی سطح حوضه نشان داد که عملکرد محصولات، آب در دسترس و قابلیت اطمینان تأمین تقاضای آب مناطق در مقایسه با سناریوی پایه کاهش، نیاز خالص آبی محصولات و تقاضای آب تأمین نشده مناطق افزایش و درآمد زارعین در افق بلندمدت در مقایسه با سناریوی پایه برای واحدهای بالادست بین 10 تا 37 درصد، میانی بین 24 تا 47 درصد و پایین­دست بین 30 تا 50 درصد کاهش پیدا می­کند. اما، بکارگیری اقدامات و راهبردهای تطبیقی مناسب با هر منطقه می­تواند اثرات تغییر اقلیم بر شرایط هیدرولویکی به ویژه برای مناطق پایین­دست و بر شرایط اقتصادی به ویژه برای مناطق بالادست را تعدیل کند. در پایان، نتایج اتخاذ ترکیبی از راهبردهای تطبیقی استفاده از سیستم مناسب انتقال آب، سامانه­های آبیاری مدرن، افزایش کشت محصول زعفران و اعمال کم آبیاری برخی از محصولات به­صورت همزمان نشان داد که تقاضای آب تأمین نشده در حد زیادی کاهش و بازده برنامه­ای کل بخش کشاورزی حدود 68 درصد در مقایسه با شرایط پایه تحت تغییر اقلیم افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Adaptation Strategies for Agricultural Water Resources Management under Climate Change in Halil-rud River Basin

نویسندگان [English]

  • abbas mirzaei 1
  • Mansour Zibaei 2
1 Ph.D. Agricultural Economics, Shiraz University
2 Professor in Agricultural Economics, Shiraz University, Iran
چکیده [English]

Introduction: During the last decades, climate change has been highly disjointed. Recent studies on climate change has approached the assessment of impacts of this phenomenon and adaptation strategies under biophysical or social perspectives. In the field of agriculture and water resources, most assessments have been based on biophysical modelling focusing on the agronomic dimension or the hydrological dimension. Therefore, integrate biophysical and social aspects looking at environmental and human contexts are vital for investigation of climate change and adaptation strategies effects. In line with this, varied types of integrated modelling frameworks have been developed to address the different scales (from the crop to the river basin) and the different dimensions of climate change, water and agriculture (hydrological, agronomic, socio economic). Water resources in the Halil-Rud river basin are likely to be seriously affected by climate change in the form of increased water scarcity and more frequent droughts which leads to conflicts among different water users and uses, especially between agricultural sector and Jazmourian wetland services. However, because of the multidimensional and multi-scalar nature of water management and climate change, it is needed to integrate tools for the analysis of impacts and adaptation. In line with this, current study presents an economic – hydrological model to evaluate potential effects of climate change and adaptation strategies on irrigated agriculture and to solve or mitigate water resources conflicts among different water users and uses in studied basin.
Materials and Methods: This study, combines a farm-based economic multi-objectives optimization model with the hydrologic model water evaluation and planning (WEAP) which can represent the socio-economic, agronomic and hydrologic systems in a spatially-explicit manner covering all dimensions and scales relevant to climate change. To this end, current study was organized in two sections. In the first section, the effects of a climate change under A2 scenario and balanced groundwater withdrawal (sustainable groundwater use) on hydrological and economic performance of basin level were investigated using an economic, agronomic and hydrologic model. Finally, adopting suitable adaptive strategies on hydrological and economic conditions were evaluated using that model. A2 scenario is primarily simulated through the hydrologic model, as it represents physical characteristics of the crop and water systems, through changes in climate variables. On the other hand, adaptation strategies that affect human behavior are firstly simulated by the economic multi-objectives model. The hydro-economic simulation model is started with the multi-objectives model run which include economic and hydrological objectives. Then, Using the MABIA method and WEAP irrigation water requirements would be calculated, allocating water to crops depending on water availability and established priorities, and estimating crop yields would be done. After the first economic-hydrologic model simulation, there is a second economic-hydrologic iteration. The economic model uses WEAP results on water delivered to irrigation communities (water availability constraints at farm level), crop yields (used to calculate the gross margin per crop) and irrigation water requirements under the simulated climate scenario and adaptation strategies to simulate farmers' adjustment of cropping patterns to a new optimal land allocation.
Result and Discussion: results indicates the multi-dimensional effects of climate change and adaptation strategies and show the large potential of integrated hydro-economic models for representing the multi-scale processes related to climate change and water management. The analysis of decisions taken at farm level has been proven to be necessary, as crop model results capture the potential of farm level adaptation to mitigate the damaging effects of climate change and these are relevant to climate change adaptation as highlighted by Reidsma et al. (2010). Results for the climate change under A2 scenario and balanced groundwater withdrawal scenario (combined scenario) on status of hydrological and economic in the level basin showed that crops yield, areas with available water and water demand reliability would decrease, while crops net water demand and areas water unmet demand would increase and farmers’ income would decrease between 10 to 37 percent for upstream, between 24 to 47 percent for middle and between 30 to 50 percent for downstream units in long –term horizon in comparison to base scenario. But, adopting suitable adaptive strategies and measures could mitigate the effects of climate change on hydrological conditions specially for downstream areas and economic conditions including upstream areas. Finally, combined suitable water transmission system, modern irrigation technologies, saffron crop cultivation and deficit irrigation of some crops adaptive strategies simultaneously indicated that unmet water demand significantly decreases and the total gross margin of agricultural sector increases by 68% in comparison to base scenario under climate change.

کلیدواژه‌ها [English]

  • Adaptation Strategies
  • Climate change
  • Economic-hydrological model
  • Halil-Rud river basin
1- Agriculture-Jahad organization in south of Kerman province. 2017. (In Persian)
2- Barkhori S., Mahdavi R., Zehtabian Gh., and Gholami, H. 2018. Evaluation of the climatic variables of Jiroft Plain using HadCM3 model in future periods. Journal of Range and Watershed Management 71(2): 355-366.
3- Bartolini F., Bazzani G.M., Gallerani V., Raggi M. and Viaggi D. 2007. The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural System 93: 90-114.
4- Blanco-Gutierrez I., Varela-Ortega C., and Purkey D.R. 2013. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: A hydro-economic modeling approach. Journal of Environmental Management, 128:144-160.
5- Brown C.M., Lund J.R., Cai X., Reed P.M., Zagona E.A., Ostfeld A., Hall J., Characklis G.W., Yu W., and Brekke L. 2015. The future of water resources systems analysis: toward a scientific framework for sustainable water management: the future OF water resources systems analysis. Water Resource Research 51(8): 6110–6124.
6- D'Agostino D.R., Scardigno A., Lamaddalena N., and ElChami D. 2014. Sensitivity analysis of coupled hydro-economic models: quantifying climate change uncertainty for decision-making. Water Resource Management 28(12): 4303-4318.
7- Downing T. E. 2012. Views of the frontiers in climate change adaptation economics. WIREs Climate Change 3: 161-170.
8- Draper, D. 2011. Assessment and Propagation of Model Uncertainty. E Scholarship.
9- Eliasson J. 2015. The rising pressure of global water shortages. Nature, 517(7532):6.
10- Esteve P., Varela-Ortega C., Gutierrez I., and Downing T.E. 2015. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics 120: 49-58.
11- Forni L.G., Medellin-Azuara J., Tansey M., Young Ch., Purkey D., and Howitt R. 2016. Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis. Water Resources and Economics16: 15-27.
12- Gohar A.A., Ward F.A., and Amer S.A. 2013. Economic performance of water storage capacity expansion for food security. Journal of Hydrology 484: 16-25.
13- Gohar, A.A., Amer S.A., and Ward F.A. 2015. Irrigation infrastructure and water appropriation rules for food security. Journal of Hydrology 520: 85-100.
14- Gottschalk P., Luttger A., Huang Sh., Leppelt Th., and Wechsung, F. 2018. Evaluation of crop yield simulations of an eco-hydrological model at different scales for Germany. Field Crops Research 228: 48-59.
15- Harou J.J., Pulido-Velazquez M., Rosenberg D.E., Medellin-Azuara J., Lund J.R., and Howitt R.E. 2009. Hydro-economic models: Concepts, design, applications and future prospects. Journal of Hydrology 375(3-4): 627-643.
16- Hwang C., and Masud A. 1979. Multiple objective decision making, methods and applications: A state of the art survey. Economic and Mathematical System 164: 18-27.
17- Joyce B.A., Mehta V.K., Purkey D.R., Dale L.L., and Hanemann M. 2011. Modifying agricultural water management to adapt to climate change in California's central valley. Climate Change, 109 (Suppl. 1):S299-S316.
18- Kahil M.T., Dinar A., and Albiac J. 2015. Modelling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology 522: 95-109.
19- Kahil M.T., Ward F., Albiac J., Eggleston J., and Sanz D. 2016. Hydro-economic modeling with aquifer–river interactions to guide sustainable basin management. Journal of Hydrology 539: 510-524.
20- Li M., Fu Q., Singh V.P., Ma M., and Liu X. 2017. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions. Journal of Hydrology 555: 80-94.
21- Lu H.W., Li J., Ren L.X., and Chen Y.Z. 2018. Optimal groundwater security management policies by control of inexact health risks under dual uncertainty in slope factors. Chemosphere 198: 161-173.
22- Medellín-Azuara J., Howitt R.E., MacEwan D.J., and Lund J.R. 2010. Economic impacts of climate-related changes to California agriculture. Climate Change 109: 387-S405.
23- Mirzaei A., and Zibaei M. 2020. Water conflict management between agriculture and wetland under climate change: Application of Economic-Hydrological-Behavioral Modelling. Water Resources Management 1-21.‏
24- Moriondo M., Bindi M., Zbigniew W., Kundzewicz Szwed M., Chorynski A., Matczak P., Radziejewski M., McEvoy D., and Wreford A. 2010. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitigation Adaptation Strategies Global Change 15(7): 657-679.
25- Nikouei A. 2012. Integrated economic-hydrological modeling of water allocation and use in Zayandehrood river basin with emphasis on evaluation of environmental and drought policies. Ph.D. thesis, Shiraz University. (In Persian)
26- Nikouei A., Zibaei M., and Ward F.A. 2012. Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis. Journal of Hydrology 464-465:216-232.
27- Pourseyadi A., and Kashkuli H.A. 2012. Studying of groundwater conditions in Jiroft basin with MODFLOW. Irrigation Sciences and Engineering 35(2): 51-63. (In Persian)
28- Regional water company of Kerman province. 2017. Water resources basic studies office. (In Persian)
29- Reidsma P., Ewert F., Lansink A.O., and Leemans R. 2010. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. The European Journal of Agronomy 32: 91-102.
30- Rochdane S., Reichert B., Messouli M., Babqiqi A., and Khebiza M.Y. 2012. Climate change impacts on water supply and demand in Rheraya Watershed (Morocco), with potential adaptation strategies. Water, 4:28-44.
31- Salman D., Amer, S.A., and Ward F. 2017. Protecting food security when facing uncertain climate: Opportunities for Afghan communities. Journal of Hydrology 554: 200-215.
32- Shooshtarian A. 2010.  Agri-environmental, economic and biophysical policy analysis in Mashhad-bilo watershed: towards agricultural sustainability. Ph.D. thesis, Shiraz University. (In Persian)
33- Sieber J., and Purkey D. 2011. WEAP, water evaluation and planning system. User Guide. Stockholm Environment Institute, U.S. Center, Somerville, USA.
34- Sunde M.G., He H.S., Hubbart J.A., and Urban M.A. 2018. An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use Midwestern. Journal of Environmental Management 220: 149-162.
35- Tanaka S.K., Zhu T., Lund J.R., Howitt R.E., Jenkins M.W., Pulido M.A., Tauber M., Ritzema R.S., and Ferreira I.C. 2006. Climate warming and water management adaptation for California. Climate Change 76: 361-387.
36- Tarazkar M.H. 2015. Integrated of water resource management in Doroodzan dam basin. Ph.D. thesis, Shiraz University. (In Persian)
37- Ventrella D., Charfeddine M., Moriondo M., Rinaldi M., and Bindi M. 2012. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Regional Environmental Change 12: 407-419.
38- Ward F.A. 2014. Economic impacts on irrigated agriculture of water conservation programs in drought. Journal of Hydrology 508: 114-127.
39- Westerhoff L., and Smit B. 2008. The rains are disappointing us: dynamic vulnerability and adaptation to multiple stressors in the Afram Plains, Ghana. Mitigation Adaptation Strategies Global Change 14: 317-337.
40- Wilhite D.A. 2005. Drought and Water Crises Science, Technology and Management Issues. CRC Press, Taylor & Francis Group, USA.
41- Yates D., Sieber J., Purkey D., and Huber-Lee A. 2005. WEAP21 - a demand-, priority-, and preference-driven water planning model. Part 1: model characteristics. Water International 30(4): 487-500.
42- Zhang F., Zhang Ch., Yan Z., Guo Sh., Wang Y., and Guo P. 2018. An interval nonlinear multi objective programming model with fuzzy interval credibility constraint for crop monthly water allocation. Agricultural Water Management 209: 123-133.
43- Zibaei M. 2007. Investigating determinants of sprinkler irrigation technology discontinuance in Iran: Comparison of logistic regression and discriminant analysis. Agricultural Economics and Development 1(2): 0-0. (In Persian)