نوع مقاله : مقالات پژوهشی
نویسندگان
1 گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 گروه توسعه کاربردهای هوش مصنوعی، پژوهشگاه ارتباطات و فناوری اطلاعات، تهران، ایران
چکیده
فناوری هوش مصنوعی یکی از راهحلهای مطلوب فعلی برای حل مشکلات بخش کشاورزی و افزایش کمی و کیفی میزان تولید محصولات این بخش است. چرا که پیشبینی و بهبود سیستمهای مدیریت مزرعه، میتواند کیفیت و عرضه محصول را تضمین کند. افزونبراین، بخش کشاورزی بهدلیل جایگاه آن در اقتصاد و امنیت غذایی کشور بهعنوان یکی از حوزههای اولویتدار برنامههای ملی توسعه فناوری هوش مصنوعی به حساب میآید. گسترش چنین فناوری جدیدی در مقیاس وسیع کشاورزی و در سطح کشور به عوامل مختلفی بستگی دارد. بنابراین، هدف اصلی تحقیق حاضر، تعیین پیشبینیکنندههای کلیدی قصد رفتاری و رفتار استفاده از فناوری هوش مصنوعی در بخش کشاورزی است. ویژگی متمایز این تحقیق ترکیب جنبههای مدل توسعه یافته نظریه یکپارچه پذیرش و استفاده از فناوری (UTAUT2) با جنبههای فناوری، سازمانی و محیطی (TOE) است. حجم نمونه مبتنی بر روش نمونهگیری تصادفی طبقهای، 211 نفر برآورد و دادهها از طریق تکمیل پرسشنامه بهصورت مصاحبه از کارکنان 9 کشت و صنعت کشاورزی واقع در چهار استان خراسان شمالی، رضوی، جنوبی و سمنان در سال 1402 جمعآوری شد. نتایج نشان داد عملکرد مورد انتظار و تأثیرات اجتماعی، مهمترین عوامل مثبت تعیینکننده قصد رفتاری افراد برای پذیرش فناوری هوش مصنوعی هستند. متغیر ترس از فناوری بهعنوان مهمترین عامل بازدارنده پذیرش فناوری تعیین شد. در بین جنبههای فناوری، سازمانی و محیطی، نتایج نقش قابل توجه جنبههای سازمانی و محیطی بر قصد رفتاری افراد را برجسته میکند. در نهایت، متغیرهای امید به تلاش، شرایط تسهیلکننده، انگیزه لذتجویی، قیمت-ارزش، اعتماد به فناوری، عادت و جنبههای فناوری دیگر عوامل تعیینکننده قصد رفتاری افراد جهت پذیرش فناوری میباشند. این نتایج اطلاعات مهمی را برای ذینفعان مختلف فراهم میکند. توصیه میشود سیاستگذاران در اجرای برنامههای توسعه فناوری هوش مصنوعی در کشاورزی متغیرهای تعیینکننده قصد رفتاری را مورد توجه قرار دهند؛ دولت باید در توسعه زیرساختهای ضروری این فناوری سرمایهگذاری کند و با وضع قوانین کارآمد و پرداخت تسهیلات کمبهره، بستر توسعه این فناوری را فراهم سازد؛ طراحان با ارائه اطلاعات و مشارکت دادن کشاورزان در فرآیند توسعه آن، آنها را بهتر در مورد عملکرد فناوری خود آگاه کنند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Investigating the Factors Influencing Behavioral Intention and Adoption of Artificial Intelligence Technology: A Case Study of Cultivation and Industries at Razavi Agricultural Company
نویسندگان [English]
- A. Sani Heidary 1
- E. Safari 2
1 Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Artificial Intelligence Applications Development Group, Communication and Information Technology Research Institute, Tehran, Iran
چکیده [English]
Introduction
In the continuity of human life, agriculture as a strategic activity plays a key role in providing food. In addition, the agricultural sector plays an important role in economic development, social welfare and environmental sustainability of all countries. However, this sector is facing many challenges in recent years. Some of its most important challenges include the increasing growth of the world's population, a 40% reduction in water and soil resources, the destruction of a quarter of agricultural land, climate change, a lack of specialized labor, poor access to financial resources, strict laws, and a decrease in the number of farmers due to a decrease in motivation. Therefore, in order to meet the growing demand for food and overcome its challenges, the agricultural sector is forced to look for new solutions such as adopting digital transformation enhanced by artificial intelligence technology. The use of artificial intelligence (AI) technology has recently become increasingly prominent in the agricultural sector. AI-based solutions assist farmers in achieving higher productivity with fewer resources, ensuring the production of high-quality and healthy products, and accelerating the marketing process. Given the significance of AI technology in enhancing the overall efficiency of the agricultural sector, this research aims to identify the key predictors that influence the behavioral intention and adoption of AI technology in agricultural companies.
Materials and Methods
The main objective of this research is to determine the key predictors of behavioral intention and behavior of using artificial intelligence technology in agricultural companies through the combination of the developed UTAUT2 model and TOE factors. The statistical population of this research is the total employees of nine cultivation and industry of Razavi Agricultural Company, which are about 465 people. Data were collected by completing multidimensional questionnaires along with semi-structured interviews from households in 2023. In total, 250 questionnaires were completed. Data of 39 respondents were excluded due to missing values. The questionnaire is designed based on the seven-point Likert scale (strongly disagree = 1, strongly agree = 7). The questionnaire used in this research includes 14 constructs in the form of 60 items. Excel 2019 software was used to analyze the raw data of the questionnaire and SmartPLS software was used to test the research hypotheses. In order to guarantee the stability of the data, a complete bootstrap method with 5000 sub-samples was performed.
Results and Discussion
The results revealed that the values of Cronbach's alpha and CR for all constructs were higher than 0.7, which shows acceptable internal consistency of the model and adequate reliability of the research constructs. AVE scores and factor loading values for all constructs are above 0.5, which indicates the correct definition of constructs and high convergence between constructs and its items. The values of rho_A as an important reliability measure for PLS-SEM for all constructs are greater than the acceptable value of 0.7. The results of the Fornell-Larcker criteria and the Heterotrait-Monotrait ratio (HTMT) indicate that the model is confirmed in terms of the constructs' discriminative validity. In addition, the research model was able to explain 89.4 and 51.7 percent of the variance of the variables of behavioral intention and the behavior of people to use artificial intelligence technology in the agricultural sector. According to the results, all research hypotheses are confirmed and the behavioral intention to adopt artificial intelligence technology is positively and significantly influenced by expected performance, social effects, hope for effort, facilitating conditions, pleasure-seeking motivation, price-value, habit, trust in technology, technological aspects, organizational aspects, and environmental aspects. However, the fear of technology variable has a negative and significant impact on people's behavioral intention.
Conclusion
This study highlights the determining the role of expected performance constructs, social influences, fear of technology, and organizational and environmental aspects compared to other constructs in predicting people's behavioral intention to adopt artificial intelligence technology in the agricultural sector and provides important information for different stakeholders. According to the results, it is suggested that the government should invest in the development of the necessary infrastructure for this technology and provide a platform for its development by establishing efficient laws and paying low-interest facilities. In addition, Designers should create user-friendly tools tailored to the agricultural conditions of the country.
کلیدواژهها [English]
- Agricultural sector
- Artificial intelligence technology
- Behavioral intention
- Structural equation modeling
- Use Behavior
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Adelkhani, , Beheshti, B., Minai, S., & Javadi Kia, H. (2015). Taste determination of Thompson orange using image processing based on ANFIS and ANN-GA methods. FSCT, 13(56), 45-55. (In Persian with English abstract). http://fsct.modares.ac.ir/article-7-2215-en.html
- Azadnia, R. (2022). Fast and accurate prediction of soil texture type based on deep learning algorithm and machine vision system. Journal of Researches in Mechanics of Agricultural Machinery, 11(1), 61-72. (In Persian with English abstract). https://doi.org/10.22034/jrmam.2022.10089.539
- Azadnia, R., Kheiralipour, K., & Jafarian, M. (2022). Classification of hawthorn fruit based on ripeness level by machine vision, Journal of Innovative Food Technologies, 9(4), 331-344. (In Persian with English abstract). https://doi.org/10.22104/ift.2022.5473.2091
- Azami, M., & Hasanpoor, K. (2020). Applying an integrated acceptance model and using technology for accepting innovations among farmers in Delfan County). Agricultural Education Administration Research, 12(52), 157-176. (In Persian with English abstract). https://doi.org/10.22092/jaear.2020.342593.1718
- Baharvand, F., Hosseinpour, M., & Jamshidi, M.J. (2022). Presenting adoption model of internet of things (IoT) in agricultural sector of Iran. J Entrepreneurial Strategies Agriculture,9(18), 22-32. (In Persian with English abstract). https://doi.org/10.52547/jea.9.18.22
- Banthia, V., & Chaudaki, G. (2022). The study on use of Artificial Intelligence in agriculture. Journal of Advanced Research in Applied Artificial Intelligence and Neural Network, 5(2), 18-22. <http://thejournalshouse.com/index.php/neural-network-intelligence-adr/article/view/590>
- Behneghar, H., Majidi, B., & Movaghar, A. (2021). Design of Hardware and Software Platform for Intelligent Automation of Livestock Farming using Internet of Things. Agricultural Mechanization and Systems Research, 22(78), 107-126. (In Persian with English abstract). https://doi.org/10.22092/amsr.2021.352371.1367
- Cabrera-Sánchez, J.P., Villarejo-Ramos, Á.F., Liébana-Cabanillas, F., & Shaikh, A.A. (2021). Identifying relevant segments of AI applications adopters–Expanding the UTAUT2’s variables. Telematics and Informatics, 58, 101529. https://doi.org/10.1016/j.tele.2020.101529
- Chikoye, D.M., Gupta, N.K., & Kandadi, K.R. (2018). Application of UTAT in understanding the adoption of technologies for reducing post-harvest maize in Zambia. International Journal of Agriculture and Environmental Research, 4(3), 610-636. https://ijaer.in/more2018.php?id=49
- Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. https://doi.org/10.1016/j.techsoc.2020.101257
- Dhanush, G., Khatri, N., Kumar, S., & Shukla, P.K. (2023). A comprehensive review of machine vision systems and artificial intelligence algorithms for the detection and harvesting of agricultural produce. Scientific African, e01798. https://doi.org/10.1016/j.sciaf.2023.e01798
- Fatahi, S., Taheri geravand, A., & Shahbazi, F. (2017). Estimate freshness of chicken meat using image processing and artificial intelligent techniques. Iranian Journal of Biosystems Engineering, 48(4), 491-503. (In Persian with English abstract). https://doi.org/10.22059/ijbse.2017.63814
- Fallah, M., & Ghanbari Parmehr, E. (2023). Detection of Chilo Suppressalis using Smartphone Images and Deep Learning. Journal of Agricultural Machinery, 13(2), 195-211. (In Persian with English abstract) https://doi.org/10.22067/jam.2022.72647.1064
- Food and Agriculture Organization. 2020. Available at https://www.fao.org/faostat/en/#home
- Hadipour Rokni, R., Askari Aslirad, A., & Sabzi, S. (2022). Identification of citrus pests using unmanned aerial vehicles and artificial intelligence methods. Journal of Researches in Mechanics of Agricultural Machinery, 11(3), 59-68. (In Persian with English abstract). https://doi.org/22034/jrmam.2022.10139.558
- Hair F., Hult, T.T.M., Ringle, C.M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM), Sage publications. https://doi.org/10.1007/978-3-030-80519-7
- Hosseini, J., Tahmasebi-Sarvestani, Z., Pirdashti, H., Modarres Sanavi, S.A.M., Mokhtassi-Bidgoli, A., & Hazrati, S. (2019). Study of diversity and estimation of leaf area in different mint ecotypes using artificial intelligence and regression models under salinity stress conditions. Journal Crop Breeding,11(32), 59-73. (In Persian with English abstract). https://doi.org/10.29252/jcb.11.32.59
- Islamic Parliament Research Center of I.R. Iran. (2021). Review of the government's performance in supporting the agriculture and natural resources sector, Deputy of Infrastructure Studies, 17498. (In Persian)
- Javaid, M., Haleem, A., Khan, I.H., & Suman, R. (2023). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem, 2(1), 15-30. https://doi.org/10.1016/j.aac.2022.10.001
- Kelly, S., Kaye, S.A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. https://doi.org/10.1016/j.tele.2022.101925
- Khayam Nekouei, M., Ghaffari, M.R., Mardi, M., Ghorbanzadeh, Z., Hamid, R., & Zeinalabedini, M. (2024). Artificial intelligence technology in agriculture; Prospects, applications and challenges. Crop Biotechnology, 13(1), 15-29. (In Persian with English abstract). https://doi.org/30473/cb.2024.70090.1941
- Khosravizadeh, M., & Khalilinasr, A. (2019). Factors affecting the adoption of artificial intelligence technology in Iranian companies. The 17th international management conference, Tehran. (In Persian) https://civilica.com/doc/1162190/
- Kothari, C.R. (2004). Research methodology: Methods and techniques. New Age International. ISBN (13): 978-81-224-2488-1
- Korkmaz, H., Fidanoglu, A., Ozcelik, S., & Okumus, A. (2022). User acceptance of autonomous public transport systems: Extended UTAUT2 model. Journal of Public Transportation, 24, 100013. https://doi.org/10.5038/2375-0901.23.1.5
- Lada, S., Chekima, B., Karim, M.R.A., Fabeil, N.F., Ayub, M.S., Amirul, S.M., & Zaki, H.O. (2023). Determining factors related to artificial intelligence (AI) adoption among Malaysia's small and medium-sized businesses. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100144. https://doi.org/10.1016/j.joitmc.2023.100144
- Leal Filho, W., Wall, T., Mucova, S.A.R., Nagy, G.J., Balogun, A.L., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662. https://doi.org/10.1016/j.techfore.2022.121662
- Lorestani, A.N., Yazdanpanah, K., & Sabzi, S. (2020). Design of tangerine sorting algorithm based on color using image processing. Journal of Researches in Mechanics of Agricultural Machinery, 9(1), 92-99. (In Persian with English abstract). https://jrmam.sku.ac.ir/article_10135.html
- Masoudi, H. (2016). Robotics; a new field for innovation and entrepreneurship development in the animal husbandry sector. Journal of Studies in Entrepreneurship and Sustainable Agricultural Development, 3(3), 19-38. (In Persian with English abstract). https://doi.org/22069/jead.2017.11635.1204
- Mercurio, D.I., & Hernandez, A.A. (2020). Understanding user acceptance of information system for sweet potato variety and disease classification: an empirical examination with an extended technology acceptance model. In 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 272-277). IEEE. 1109/CSPA48992.2020.9068527
- Michels, M., Bonke, V., & Musshoff, O. (2020). Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, 21, 1209-1226. https://doi.org/10.1007/s11119-020-09715-5
- Michels, M., Fecke, W., Feil, J.H., Musshoff, O., Pigisch, J., & Krone, S. (2020). Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agriculture,21, 403-425. https://doi.org/10.1007/s11119-019-09675-5
- Nascimento, A., & Meirelles, F. (2021). An artificial intelligence adoption model for large and small Businesses. Available at SSRN 4194043. http://dx.doi.org/10.2139/ssrn.4194043
- Najafabadiha, M., Mohammad Zamani, D., & Gholami Parashkoohi, M. (2023). Diagnosis of Three Types of Grape Leaf Diseases Based on Image Processing using Butterfly Optimization Algorithm and Support Vector Machine. Agricultural Mechanization and Systems Research, 24(87), 39-54. (In Persian with English abstract) https://doi.org/10.22092/amsr.2024.365272.1482
- NoruziAjabshir, F., Lashgarara, F., Mirdamadi, M., OmidiNajafabadi, M. (2020). Factors influencing adoption of improved wheat varieties and their impacts on food security dimensions: Application of unified theory of acceptance and use of technology (UTAUT2) in East Azarbaijan. Journal of Agricultural Extension and Education Research, 12(4), 1-12. (In Persian with English abstract) https://www.magiran.com/p2100958
- Ostad Hashemi, A., AllafJafari, E., & Rousta, A. (2024). Factors affecting the acceptance of the use of artificial intelligence in the sale of saffron products. Journal of Intelligent Marketing Management, 5(3), 135-155. (In Persian with English abstract). 3.2.15564.35887873.63094598548
- Rezaei, M.J., yazdian-dehkordi, M., & Sarram, M.A. (2021). Intelligent identification and classification of nutrient deficiency in pistachio trees using support vector machine. Journal of Researches in Mechanics of Agricultural Machinery, 10(3), 9-19. https://jrmam.sku.ac.ir/article_10024.html
- Ronaghi, M.H., & Forouharfar, A. (2020). A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT). Technology in Society, 63, 101415. https://doi.org/10.1016/j.techsoc.2020.101415
- Rübcke von Veltheim, F., Theuvsen, L., & Heise, H. (2021). German farmers’ intention to use autonomous field robots: a PLS-analysis. Precision Agriculture, 1-28. https://doi.org/10.1007/s11119-021-09854-3
- Sabzi, S., Abbaspour-Gilande, Y., & Javadikia, H. (2019). Recognition of secale cereal L weed from potato plant using video processing and computational intelligence. Agricultural Mechanization and Systems Research, 20(72), 1-18. (In Persian with English abstract). https://doi.org/22092/erams.2017.106915.1113
- Saedi, S.I. (2023). Determining apple fruit harvest time using color images and deep learning. Journal of Researches in Mechanics of Agricultural Machinery, 12(3), 45-53. (In Persian with English abstract). https://doi.org/22034/jrmam.2023.14078.619
- Sani Heidary, A., Daneshvar Kakhki, M., Shanoushi, N., & Sabouhi Sabouni, M. (2020). Analysis of the effect of microcredit on rural sustainable development components: Application of propensity score regression approach and bootstrap algorithm. Agricultural Economics, 14(1), 47-87. (In Persian with English abstract). https://doi.org/22034/iaes.2020.124925.1765
- Salimi, M., Pourdarbani, R., & Asgarnezhad Nouri, B. (2021). Ranking the effective factors in the technology acceptance model for the actual use of agricultural automation (Case study: Ardebil). Journal of Agricultural Machinery, 11(2), 525-534. (In Persian with English abstract). https://doi.org/10.22067/jam.v11i2.81398
- Salimi, M., Pourdarbani, R., & Nouri, B.A. (2020). Factors affecting the adoption of agricultural automation using Davis’s acceptance model (case study: Ardabil). Acta Technologica Agriculturae, 23(1), 30-39. https://doi.org/10.2478/ata-2020-0006
- Sayahi, F., Divband Hafshejani, L., Tishehzan, P., & Abdolabadi, H. (2024). The combination of dimensionality reduction methods and machine learning algorithms in the optimization of Maroon River water quality prediction. Iranian Journal of Soil and Water Research, 55(9), 1601-1615. (In Persian with English abstract). https://doi.org/22059/ijswr.2024.376275.669708
- Scur, G., da Silva, A.V.D., Mattos, C.A., & Gonçalves, R.F. (2023). Analysis of IoT adoption for vegetable crop cultivation: Multiple case studies. Technological Forecasting and Social Change, 191, 122452. https://doi.org/10.1016/j.techfore.2023.122452
- Shadrin, D., Menshchikov, A., Somov, A., Bornemann, G., Hauslage, J., & Fedorov, M. (2019). Enabling precision agriculture through embedded sensing with artificial intelligence. IEEE Transactions on Instrumentation and Measurement, 69(7), 4103-4113. https://doi.org/1109/TIM.2019.2947125
- Sood, A., Sharma, R.K., & Bhardwaj, A.K. (2022). Artificial intelligence research in agriculture: a review. Online Information Review, 46(6), 1054-1075. https://doi.org/10.1108/OIR-10-2020-0448
- Sood, A., Bhardwaj, A.K., & Sharma, R.K. (2023). Empirical analysis and evaluation of factors influencing adoption of AI-based automation solutions for sustainable agriculture. In International Conference on Agriculture-Centric Computation (pp. 15-27). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43605-5_2
- Thomas, R.J., O'Hare, G., & Coyle, D. (2023). Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production. Technological Forecasting and Social Change, 189, 122374. https://doi.org/10.1016/j.techfore.2023.122374
- Tzachor, A., Devare, M., King, B., Avin, S., & Ó hÉigeartaigh, S. (2022). Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2), 104-109. https://doi.org/10.1038/s42256-022-00440-4
- Vasileiou, M., Kyriakos, L.S., Kleisiari, C., Kleftodimos, G., Vlontzos, G., Belhouchette, H., & Pardalos, P.M. (2023). Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning. Crop Protection, 106522. https://doi.org/10.1016/j.cropro.2023.106522
- Venkatesh, V., Thong, J.Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 157-178. https://doi.org/10.2307/41410412
- Valizadeh, N., Haji, L., & Khannejad, S. (2022). Analyzing the drivers of adopting agricultural unmanned aerial vehicles (UAV) in wheat cultivation. Iranian Agricultural Extension and Education Journal,17(2), 251-263. (In Persian with English abstract). https://doi.org/1001.1.20081758.1400.17.2.16.4
- Vuppalapati, C. (2021). Machine learning and artificial intelligence for agricultural economics: Prognostic data analytics to serve small scale farmers worldwide(Vol. 314). Springer Nature. https://search.worldcat.org/title/1273913176
ارسال نظر در مورد این مقاله