با همکاری انجمن اقتصاد کشاورزی ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

از مهم‌ترین مسائل و چالش‌های پیشرو در جهان امروز، آلودگی هوا و به‌خصوص آلاینده PM2.5 می‌باشد، به‌نحوی‌که این مساله به یکی از معضلات پیچیده و جدی در زندگی انسان‌های سراسر جهان تبدیل‌شده است. قرار گرفتن در معرض سطوح بالای آلودگی هوا موجب پیامدهای منفی سلامتی است. مطالعه حاضر در نظر دارد تا تمایل به پرداخت ساکنین شهر مشهد برای بهبود آلاینده PM2.5 و عوامل مؤثر بر این تمایل به پرداخت را اندازه‌گیری کند. برای رسیدن به این هدف از روش نمونه‌گیری خوشه‌ای دو مرحله‌ای از 343 نفر و با بکار بردن مدل انتخاب گسسته چندبعدی (MBDC) و الگوی اقتصادسنجی لاجیت ترتیبی استفاده شد. بر اساس نتایج، تمایل به پرداخت مردم مشهد برای بهبود کیفیت آلاینده PM2.5 به میزان 55488 ده ریال برآورد شد. همچنین نتایج نشان داد که متغیرهایی همچون تحصیلات، سن افراد، داشتن بیماری تنفسی و درآمد بر تمایل به پرداخت افراد اثری مثبت و معنی‌دار و متغیر بعد خانوار اثر منفی و معنی‌داری بر تمایل به پرداخت داشته است. نتایج این پژوهش می‌تواند شهرداری مشهد را نسبت به میزان درآمد احتمالی از عوارض محیط‌زیستی ناشی از آلودگی هوا که شهروندان مایل به پرداخت آن برای بهبود کیفیت هوا هستند، آگاه سازد و پیشنهاد می‌شود شهرداری این عوارض محیط‌زیستی را به‌صورت ماهانه جمع‌آوری و به‌صورت اختصاصی برای پروژه‌های کاهش آلودگی هوا استفاده کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Estimation of Willingness to Pay and the Influential Factors for Air Quality Improvement in the City of Mashhad

نویسندگان [English]

  • S. Kalhori 1
  • L. Abolhasani 1
  • M. Sabouhi Sabouni 1
  • M. Sarkhosh 2

1 Department of Agricultural Economics, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Environmental Health Engineering, Mashhad University of Medical Sciences, Mashhad, Iran

چکیده [English]

Introduction
Given the rapid process of industrialization, expansion of agriculture, increased reliance on fossil fuels, and the intensification of climatic conditions, air quality has rapidly deteriorated in recent years. One of the most important issues and challenges facing the world today is air pollution, particularly PM2.5 pollution. This problem has evolved into one of the most complex and serious dilemmas affecting the lives of people worldwide. Exposure to high levels of air pollution has negative health implications. The present study aims to measure the willingness to pay of Mashhad city residents for the improvement of PM2.5 pollution and identify the factors influencing this willingness to pay.
 
Materials and Methods
This study used contingent valuation and the multiple-bound discrete choice model to calculate individuals' willingness to pay. The research focused on the certainty level of "definitely yes" and generated 13 different proposals ranging from 10,000 Toman to 200,000 Toman. The ordered logit regression model was employed to analyze the factors influencing the willingness of Mashhad citizens to pay for air quality improvement. The study collected 343 questionnaires from Mashhad city residents, considering variables such as education level, age, gender, marital status, family size, presence of children, chronic respiratory diseases and individuals' income. The dependent variable was the public's willingness to pay for improving air quality regarding PM2.5.
 
Results and Discussion
The study found that a significant portion of respondents were willing to pay for air quality improvement. About 22.45% were willing to pay less than 10,000 Toman, 60.06% were willing to pay between 45,000 and 58,000 Toman, 5.83% were willing to pay between 95,000 and 120,000 Toman, and 11.66% were willing to pay between 155,000 and 200,000 Toman. The average willingness to pay for PM2.5 pollutant improvement in Mashhad was estimated to be 55,488 Toman. Education, age, respiratory diseases, income, and family size were found to affect willingness to pay.
 
 
Conclusion 
Improving air quality and reducing pollution requires costly efforts and collaboration from society. This research examines individuals' willingness to financially contribute to air quality enhancement. Factors influencing their willingness to pay are also studied. Based on the findings, it is recommended that the government and municipal authorities impose taxes and levies on polluting sectors, considering the calculated value of air pollution and its sources. Educational programs tailored to diverse educational backgrounds, along with technology and social media, can raise environmental awareness among youth. Developing cost-effective public transportation systems and providing discounts for low-income individuals can also help reduce pollution. Financial programs and incentives for cleaner resources are another solution for improving air quality.

کلیدواژه‌ها [English]

  • Mashhad
  • Multiple-bound discrete choice method (MBDC)
  • PM2.5
  • Willingness to pay

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abedian, S., Mirsanjari, M.M., & Salmanmahiny, A. (2021). Estimation of citizens’ willingness to pay District 5 of Tehran to improve air quality using a conditional valuation method. The Journal of Economic Policy, 12(24), 1–40. (In Persian with English abstract). https://doi.org/10.22034/epj.2021.13244.2048
  2. Adeli, O.A., Arabi, H., & Rahimi Kahkashi, S. (2021). Assessment attitudes and factors affecting the willingness of Mohajeran citizens to pay to improvement of air quality. Journal of Natural Environment, 73(4), 715–728. (In Persian with English abstract). https://doi.org/10.22059/jne.2021.309450.2068
  3. Arceo, E., Hanna, R., & Oliva, P. (2016). Does the effect of pollution on infant mortality differ between developing and developed countries? Evidence from Mexico City. The Economic Journal, 126(591), 257–280. https://doi.org/10.1111/ecoj.12273
  4. Baik, S., Davis, A.L., & Morgan, M.G. (2018). Assessing the cost of large‐scale power outages to residential customers. Risk Analysis, 38(2), 283–296. https://doi.org/10.1111/risa.12842
  5. Becker, G.S. (2009). Human Capital: A Theoretical and Empirical Analysis, with Special.
  6. Bharadwaj, P., Gibson, M., Zivin, J.G., & Neilson, C. (2017). Gray matters: Fetal pollution exposure and human capital formation. Journal of the Association of Environmental and Resource Economists, 4(2), 505–542. https://doi.org/10.1086/691591
  7. Cameron, T.A., & Huppert, D.D. (1989). OLS versus ML estimation of non-market resource values with payment card interval data. Journal of Environmental Economics and Management, 17(3), 230–246. https://doi.org/10.1016/0095-0696(89)90018-1
  8. Cooper, B., Burton, M., & Crase, L. (2011). Urban water restrictions: Attitudes and avoidance. Water Resources Research, 47(12), 12527. https://doi.org/10.1029/2010WR010226
  9. Cooper, B., Burton, M., & Crase, L. (2019). Willingness to pay to avoid water restrictions in Australia under a changing climate. Environmental and Resource Economics, 72(3), 823–847. https://link.springer.com/article/10.1007/s10640-018-0228-x
  10. Eftec (Economics for the Environment Consultancy). (2006). In association with Environmental Futures Limited Valuing Our Natural Environment Final Report NR0103 For Department for Environment, Food and Rural Affairs. https://iwlearn.net/resolveuid/31143e1709af2d73752e773c6af552d9
  11. Eskandari, H., Noroozi, H., Naybandi Atashi, M. Rasool, Kalhori, S., & Rafiee, H. (2019). Estimating the Willingness to pay for air quality improvement with emphasis on agriculture and natural resources in Ahvaz County. Iranian Journal of Agricultural Economics and Development Research, 50(3), 451–465. (In Persian with English abstract). https://doi.org/10.22059/ijaedr.2018.252648.668567
  12. Greene, W.H. (2003). Econometric analysis. Pearson Education India, Delhi. References - Scientific Research Publishing.
  13. Hanemann, M.J.L.-A. (1991). Statistical efficiency of double‐bounded dichotomous choice contingent valuation. Wiley Online LibraryM Hanemann, J Loomis, B KanninenAmerican Journal of Agricultural Economics, 1991•Wiley Online Library, 73(4), 1255–1263. https://doi.org/10.2307/1242453
  14. Hanley, N., Shogren, J.F., & White, B. (1997). Environmental economics in theory and practice. Environmental Economics in Theory and Practice. https://doi.org/10.1007/978-1-349-24851-3
  15. Hanna, R., Oliva, P., Thank, W., Hill, J., Kimble, K., Bustos, S., Abadie, A., Card, D., Davis, L., Dellavigna, S., Glaeser, E., Greenstone, M., Khwaja, A., Kuhn, P., Lundberg, S., Mullainathan, S., Neidell, M., Olken, B., Pande, R., & School, H. K. (2011). The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City. https://doi.org/10.1016/j.jpubeco.2014.10.004
  16. Hassanvand, M.S., Naddafi, K., Faridi, S., Arhami, M., Nabizadeh, R., Sowlat, M.H., Pourpak, Z., Rastkari, N., Momeniha, F., Kashani, H., Gholampour, A., Nazmara, S., Alimohammadi, M., Goudarzi, G., & Yunesian, M. (2014). Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmospheric Environment, 82, 375–382. https://doi.org/10.1016/J.ATMOSENV.2013.10.048
  17. Health Effects Institute. (2020). Annual Report 2020 | Health Effects Institute. https://www.healtheffects.org/annual-report-2020
  18. Hu, L., & Liao, W. (2023). Is there a stronger willingness to pay for air quality improvement with high education: new evidence from a survey in China. Environmental Science and Pollution Research, 30(11), 28990–29014. https://doi.org/10.1007/S11356-022-24108-Z
  19. Jackson, J.M. (1960). Structural characteristics of norms. Teachers College Record, 61(10), 136-163. https://doi.org/10.1177/016146816006101007
  20. Jiang, N., Ao, C., Xu, L., Wei, Y., & Long, Y. (2023). Will information interventions affect public preferences and willingness to pay for air quality improvement? An empirical study based on deliberative choice experiment. Science of The Total Environment, 868, 161436. https://doi.org/10.1016/J.SCITOTENV.2023.161436
  21. Lee, J.F.J., Springborn, M., Handy, S.L., Quinn, J.F., & Shilling, F.M. (2010). Approach for economic valuation of environmental conditions and impacts. Prepared for Caltrans’. Final Valuation Report UCD, 123.
  22. Levy, P.S., & Lemeshow, S. (2008). Sampling of populations : methods and applications. 576. https://books.google.com/books/about/Sampling_of_Populations.html?id=XU9ZmLe5k1IC
  23. Li, C.Z., & Mattsson, L. (1995). Discrete choice under preference uncertainty: An improved structural model for contingent valuation. Journal of Environmental Economics and Management, 28(2), 256–269. https://doi.org/10.1006/JEEM.1995.1017
  24. Liao, T.F. (1994). Interpreting probability models: Logit, probit, and other generalized linear models. Quantitative Application in the Social Science/Sage Publication.
  25. Liu, X., He, J., Xiong, K., Liu, S., & He, B.J. (2023). Identification of factors affecting public willingness to pay for heat mitigation and adaptation: Evidence from Guangzhou, China. Urban Climate, 48, 101405. https://doi.org/10.1016/J.UCLIM.2022.101405
  26. Maddala, G.S. (1983). Limited-dependent and qualitative variables in econometrics (Issue 3). Cambridge university press.
  27. Malik, S., Arshad, M.Z., Amjad, Z., & Bokhari, A. (2022). An empirical estimation of determining factors influencing public willingness to pay for better air quality. Journal of Cleaner Production, 372, 133574. https://doi.org/10.1016/J.JCLEPRO.2022.133574
  28. Mao, B., Ao, C., Wang, J., Sun, B., & Xu, L. (2020). Does regret matter in public choices for air quality improvement policies? A comparison of regret-based and utility-based discrete choice modelling. Journal of Cleaner Production, 254, 120052. https://doi.org/10.1016/J.JCLEPRO.2020.120052
  29. Mashhad Environmental Pollutants Monitoring Center. (2021). A comprehensive report of the monitoring network of urban environmental pollutants in Mashhad. https://epmc.mashhad.ir/s/mfahvXC
  30. Mitchell, R.C., & Carson, R.T. (2013). Using surveys to value public goods: the contingent valuation method. Rff press.
  31. Montazer-Hojat, A.H., Anvari, E., & Bashi, M. (2018). Economic valuation of tourist attractions of Shushtar’s ancient waterfalls. Tourism Management Studies, 13(42), 21–39. (In Persian with English abstract). https://doi.org/10.22054/tms.2018.9013
  32. Portney, P.R. (1994). The contingent valuation debate: Why economists should care. Journal of Economic Perspectives, 8(4), 3–17. https://doi.org/10.1257/JEP.8.4.3
  33. Rowe, R.D., Schulze, W.D., & Breffle, W.S. (1996). A test for payment card biases. Journal of Environmental Economics and Management, 31(2), 178–185. https://doi.org/10.1006/JEEM.1996.0039
  34. Sajadyan, S.M., Neshat, A., & Fatahi Ardakani, A. (2020). Economic study of possiblity of improvement of air quality in Arak metropolis. Agricultural Economics Research, 12(46), 19–34. (In Persian with English abstract). https://jae.marvdasht.iau.ir/article_4131.html
  35. Sharzehi, G., & Jalili Kamjoo, S. P. (2013). Choice modeling:a new approach to valuation of environmental commodity; case study: Ganjnameh, Hamadan. Mdrsjrns, 13(3), 1–18. (In Persian). http://ecor.modares.ac.ir/article-18-3344-en.html
  36. Shelby, B. (1981). Encounter norms in backcountry settings: Studies of three rivers. Journal of Leisure Research, 13(2), 129–138. https://doi.org/10.1080/00222216.1981.11969475
  37. Suk, (2018). An Estimate of internal carbon pricing of Korean companies under the emission trading scheme. Korean Environmental Economics Association. https://www.iges.or.jp/en/pub/estimate-internal-carbon-pricing-korean-0/en
  38. Tan-Soo, J.S., Finkelstein, E., Pattanayak, S., Qin, P., Zhang, X., & Jeuland, M. (2022). Air quality valuation using online surveys in three Asian megacities. Resources, Environment and Sustainability, 10, 100090. https://doi.org/10.1016/J.RESENV.2022.100090
  39. Tan-Soo, J.S., & Pattanayak, S.K. (2019). Seeking natural capital projects: Forest fires, haze, and early-life exposure in Indonesia. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 5239–5245. https://doi.org/10.1073/pnas.1802876116
  40. Tian, X., Yu, X., Holst, R., Tian, X., & Yu, X. (2011). Applying the payment card approach to estimate the WTP for green food in China. https://www.econstor.eu/handle/10419/50786
  41. Venkatachalam, L. (2004). The contingent valuation method: a review. Environmental Impact Assessment Review, 24(1), 89–124. https://doi.org/10.1016/S0195-9255%2803%2900138-0
  42. Vossler, C.A., Poe, G.L., Welsh, P., & Ethier, R.G. (2004). Bid design effects in multiple bounded discrete choice contingent valuation. Environmental and Resource Economics, 29(4), 401–418. https://doi.org/10.1007/s10640-004-9457-2
  43. Wang, H. (1997). Treatment of “Don’t-Know” responses in contingent valuation surveys: A random valuation model. Journal of Environmental Economics and Management, 32(2), 219–232. https://doi.org/10.1006/JEEM.1996.0965
  44. Wang, H., He, J., & Huang, D. (2018). Valuation biases caused by public distrust: Identification and calibration with contingent valuation studies of two air quality improvement programs in China. Cahier de recherche/Working Paper18, 05. https://ideas.repec.org/p/shr/wpaper/18-05.html
  45. Wang, W., & Ye, X. (2020). The potential supply and demand of farmers’ land contract rights-based on 697 households in four provinces of China. Land, 9(3), 80. https://doi.org/10.3390/LAND9030080
  46. Welsh, M.P., & Bishop, R.C. (1993). Multiple bounded discrete choice models. Benefits & costs transfer in natural resource planning, Western Regional Research Publication, W-133, Sixth Interim Report, Department of Agricultural and Applied Economics, University of Georgia, 331-352.
  47. Welsh, M.P., & Poe, G.L. (1998). Elicitation effects in contingent valuation: comparisons to a multiple bounded discrete choice approach. Journal of Environmental Economics and Management, 36(2), 170–185. https://doi.org/10.1006/JEEM.1998.1043
  48. WHO. (2018). 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. https://www.who.int/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
  49. Zhao, Y., Wang, C., Sun, Y., & Liu, X. (2018). Factors influencing companies’ willingness to pay for carbon emissions: Emission trading schemes in China. Energy Economics, 75, 357–367. https://doi.org/10.1016/J.ENECO.2018.09.001
  50. Zhou, R., Fukuda, H., Li, Y., & Wang, Y. (2023). Comparison of Willingness to pay for quality air and renewable energy considering urban living experience. Energies, 16(2), 992. https://doi.org/10.3390/EN16020992
  51. Zvobgo, L. (2021). Consumer ability and willingness to pay more for continuous municipal water supply in Chitungwiza. Sustainable Water Resources Management, 7(2), 1–15. https://doi.org/10.1007/S40899-021-00498-9

 

CAPTCHA Image