با همکاری انجمن اقتصاد کشاورزی ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زابل

2 گروه اقتصاد کشاورزی، دانشگاه زابل، زابل، ایران

3 دانشگاه فردوسی مشهد

4 گروه اقتصاد کشاورزی دانشکده کشاورزی دانشگاه باهنر

چکیده

این مطالعه با هدف شبیه‌سازی زنجیره عرضه گوشت مرغ در استان خراسان رضوی و بررسی رفتار آن در مواجهه با بیماری آنفولانزای مرغی صورت گرفت. به جهت پوشش حداکثری تغییرات زنجیره در سطوح مختلف برای تقاضا و هم‌چنین درصد تلفات وارده به مرغداری‌ها سه سناریو به‌طور مجزا برای بازه زمانی 120 روزه انتهای سال 1394 در نظرگرفته شد و در طول پژوهش رفتار زنجیره عرضه بسته به هر سناریو بررسی گردید. شبیه‌سازی و تحلیل زنجیره با استفاده از نرم‌افزار Vensim صورت گرفت. در ابتدای امر مدل عرضه گوشت مرغ بدون تأثیرپذیری از همه‌گیری بیماری آنفولانزا شبیه‌سازی گردید. در این شبیه‌سازی تقاضا برای گوشت مرغ در استان ثابت در نظر گرفته شد و همه ضرایب اثرگذار بر معادلات مدل به‌صورت حالت بهینه در نظر گرفته شدند. در صورت استفاده 90 درصدی از ظرفیت موجود در مرغداری‌های استان و با شرط اینکه مازاد عرضه مرغ بتواند از استان خارج شود هم‌چنین لحاظ نکردن محدودیت موجودی انبار در میزان تولید 615 تن در روز زنجیره تولید به تعادل خواهد رسید. با توجه به درصد میزان زنده فروشی، اعمال محدودیت مختلف از جمله ظرفیت تولیدی، صادرات و هم‌چنین در نظرگرفتن شرایط طرف تقاضا در زنجیره این عدد برابر با 382 تن در روز خواهد بود. نتایج نشان داد زنجیره عرضه گوشت مرغ در مواجهه با آنفولانزای مرغی فقط در صورت کاهش در تقاضا قادر به پاسخگویی به نیاز مصرفی این محصول در استان می‌باشد. درمجموع می‌توان گفت حتی در صورت وارد شدن تلفات بالا به مرغداری‌های استان می‌توان با مدیریت صحیح افت محصول و ترغیب تولیدکنندگان به کاستن از مدت دوره پرورش به‌راحتی بحران را پشت سر گذاشت و علاوه بر آن باعث افزایش درآمد تولیدکنندگان نیز شد. با توجه به نتایج، مدیریت و ایجاد سامانه یکپارچه کشتارگاه‌ها پیشنهاد می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Simulation of Chicken Meat Supply Chain Facing Bird Flu Crisis: Case Study: Khorasan Razavi Province

نویسندگان [English]

  • M. Jamshidifar 1
  • M. Salarpour 2
  • M. Sabouhi 3
  • H. Mehrabi 4
  • M Ahmadpour Borazjani 1

1 Zabol university

2 Department of Agricultural Economics, Zabol University, Zabol, Iran

3 Ferdowsi University of Mashhad

4 Kerman

چکیده [English]

Introduction: Poultry is now one of the largest industry in Khorasan Razavi province and chicken meat has an important role in household food needs. Developing appropriate studies that lead to strategies for handling poultry products to fulfil consumers’ demand have become quite a challenging issue especially due to crisis situation. Supply chain system in this paper means a chain of processes from the rearing farm to the final consumer of the finished product and provide useful operational analysis of system behaviors for managing supply chain under demand uncertainties and production disruptions.
Materials and Methods: In this paper, a system dynamics model is applied for studying the behavior of the chicken meat supply chain threatened by bird flu, demand fluctuation and Government (State Livestock Affairs Logistics) intervention under the Vensim environment. The model is an extended version of real-life practice which involves producers, consumers and government. A causal loop diagram used to show how interrelated variables affect one another and connect together. This important diagram can handle assumptions regarding facing various calamities and disaster which is an integral part of the poultry industry. This dynamic model development can track possible disasters in time to prepare facing them. To cover more possibility, we propose three scenarios of different levels for demand and present of loss bird. To find out the most efficient rearing rate in crisis situation, demand fluctuation and loss bird rate are considered simultaneously in scenarios. Importance of chicken meat strategic reserve for Norouz lead us to impose a constraint for government purchasing and expenditure during the last month of simulation. Operations during a 120 days are simulated and a what-if analysis performed to study the model stability under uncertainty environment.
Results and Discussion: As a starting position no bird losses rate and demand problems included and supply chain fills all of demands without purchase chicken meat from external markets. The equilibrium was reached when the available live chicken level equals to 382 (ton/day). Results showed that without changing demand levels for achieving supply chain stability, the system need to import chicken meat for entire of the crisis period and government intervenes in market to ensure remunerative prices for producers and affordable prices for consumers. In sanitary crisis situation, decreasing demand can reduce the external purchases and unexpected costs but it decreases net income of producers simultaneously. In all scenarios external purchases and unexpected government purchasing are zero when the demand decreasing level is maximum. The simulation results showed that 10 percent of domestic farms affecting by Bird flu can increase the amount of external purchases up to 40 (ton/day) and give rise to unexpected government expenditures by 3360 (million Rial). It is evident from the model that slaughtering all reared chicken (available live chickens) after exactly 42 days can give number of benefits to the industry and profit is maximize in the simulated behavior for this scenario test. Reduction of rearing time can increase the amount of available chicken meat and net income of producer by 18 percent. In contrast, an increase of 15 days in rearing time can considerably reduce net income of producer by 30 percent. This means that a reduction of rearing time (standardization of poultry size and weight) can be a solution to improve poultry industry in Khorasan Razavi province. Income of producer is sensitive to the crisis and it is reduced up to 27 percent at peak of bird loss rate. Poultry producers are suffering from economic loss due to management, bird disease and transportation stress. These factors not only affects the quantity but also decrease the quality of chicken meat. On the other hand, 5 percent decrease in slaughterhouse and transportation mortalities immediately leads to an increase in supply chain incomes and the level of chicken meat inventory. According to the result, with management of chicken transportation, slaughter and rearing time, even in the worst scenario when the loss bird rate was maximum, it is possible to fulfil demand with domestic production capacity.
Conclusions: The supply chain is affected by endogenous and exogenous factors such as government intervention. Therefore an establishment of an integrated system between rearing farms, transport system, slaughterhouse and government purchasing can be helpful especially in crisis period. Poultry industry can integrate complete supply chain network so decision-makers can assist calculating the economic returns and reduce the risk. Moreover, producers will be able to compete with the other provinces and global markets as well as reducing their operational costs. Future research can focus on the different variables and study poultry wastes of processing by-products on the poultry industry in Khorasan Razavi province.

کلیدواژه‌ها [English]

  • Demand crisis
  • Dynamic modeling
  • poultry industry
  • Supply chain management
1- Almeder C., Preusser M., and Hartl R. 2009. Simulation and optimization of supply chains: alternative or complementary approaches. Spectrum, 31: 95–119.
2- Bashashati M., Haghighi Khoshkhoo P., Bahonar A., Kazemi A., and Sabouri F. 2010. Poultry diseases in Iran: an epidemiological study on different causes of mortality in broilers. Int J VetRes, 4: 177-182.
3- Beske P., Land A., and Seuring S. 2013. Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. Production Economics, 21: 1-13.
4- Carlevaro M., Quagliano J., Fernandez S., and Cetrangolo H. 2004. Honey agri-food chain in Argentina: model and simulation. New Medit, 645-660.
5- Chandra P., and Fisher M. 1994. Coordination of production and distribution planning. European Journal of Operation Research, 72: 503-517.
6- Cliffs N.J. 1994. Marketing Management: Analysis, Planning, Implementation, and Control (The Prentice-Hall Series in Marketing). Prentice-Hall, 8th Edition.
7- Forrester J.W. 1958. Industrial Dynamics: A major breakthrough for decision makers. Harvard Business Review, 36(4): 37-66.
8- Giannakis M., and Papadopoulos T. 2016. Supply chain sustainability: A risk management approach. International Journal of Production Economics, 171: 455-470.
9- Gilanpor A., Kohansal M., Perme Z., and Esmailpor A. 2010. Investigation of government intervention in the chicken meat market. Trade Studies. 63: 137-168. (In Persian).
10- Hoa Vo T. L., and Thiel D. 2011. Economic simulation of a poultry supply chain facing a sanitary crisis. British Food Journal, 113(8): 1011-1030.
11- Jayaraman V., and Pirkul H. 2001. Planning and coordination of production and distribution facilities for multiple commodities", European Journal of Operation Research, 133: 394-408.
12- Kung Y., Guan N.R., Perkins L., Bissett T., and Ellis N .2003. The impact of a monthly rest day on avian influenza virus isolation rates in retail live poultry markets in Hong Kong. Avian Dis, 47: 1037–1041.
13- Leung E.H., Lau, L.J., Zhang Y., Guan B.J., and Cowling Y.H. 2012. Avian influenza and ban on overnight poultry storage in live poultry markets, Hong Kong. Infect Dis, 18: 1339–1341.
14- Maani K. E., and Cavana R. Y. 2007. Systems thinking, System dynamics: Managing change and complexity. First Edition, Auckland: Pearson Education (NZ) and Prentice Hall, pp: 142- 145.
15- McLeod A., Morgan N., Prakash A., Hinrishs J., and FAO. 2005. Economic and Social Impact of Avian Influenza. FAO Emergency Centre for Transboundary Animal Diseases Operations. Retrieved December 20, 2008, from
16- Mohammadinejad A., Yazdani S., and Zeraatkish S.Y. 2009. Provincial compare of Iran’s poultry factor productivity between 2000-2010. Journal of Agricultural Economics. 3(3): 15-29. (in Persian).
17- Mullaney R. 2003. Live-bird market closure activities in the northeastern United States.
18- Ovalle O.R., and Marquez A.C. 2003. Exploring the utilization of a CONWIP system for supply chain management. A comparison with fully integrated supply chains. Journal of Production Economics, 83: 195–215.
19- Petrovic D., Roy R., and Petrovic R. 1998. Modelling and simulation of a supply chain in an uncertain environment. European Journal of Operation Research, 109(2): 299-309.
20- Quinn F.J. 1997. What’s the buzz? Logistics Management, 36(2): 43-47.
21- Rahmani R., and Torkamani J. 2010. Impact of price risk on chicken and cow meat production Condition in Fars province. Agricultural Economics. 1:51-78. (in Persian).
22- Richardson G.P. 1986. Problems with causal-loop diagrams. System Dynamics Review, (2):158-170.
23- Schätter F., Hansen O., Herrmannsdörfer M., Wiens, M., and Schultmann F. 2015. Conception of a simulation model for business continuity management against food supply chain disruptions. Procedia Engineering, 117: 146-153.
24- Shamsuddoha M., and Nasir T. 2013. Poultry reverse supply chain process conveys environmental sustainability. Ecoforum, 2(2): 41-52.
25- Shamsuddoha M., Desmond K., and Quaddus M. 2013. Poultry wastage re-usage through reverse supply chain process to attain environmental sustainability. PhD thesis. Curtin University.
26- Shrivastava M. 1995. The role of corporations in achieving ecological sustainability. Academy of Management Review, 20(4): 936-960.
27- Statistical center of Iran. 2010. A selection of poultry survey result. Tehran.
28- Sterman J.D. 2000. Business dynamics: systems thinking and modelling for a complex world. Boston, Mass.: Irwin/McGraw-Hill. 982.
29- Tahmasebi A., and Moghadasi R. 2010. Effective factor in Iran’s poultry Marketing margins. Economics and Agricultural Development. 71:163-178. (in Persian).
30- Trade association of one-day chicken. 2014. Poultry industry in 2014. Miran, Tehran. (in Persian).
31- Trock J.P., and Huntley S.C. 2010. Surveillance and control of live bird markets. Avian Dis, 54: 340–344.
32- Wang J., and Shu Y.F. 2005. Fuzzy decision modeling for supply chain management. Fuzzy Sets and Systems, 150: 107-127.
33- Wanga X., and Li D. 2012. A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega, 40: 906–917.
34- World health organization. 2016. Animal health in the world. http://www.oie.int/en/animal-health-in-the-world/web-portal-on-avian-influenza/
35- Yu J.T., Wu B.J., Cowling Q., Liao V.J., and Fang H. 2014. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. Lancet, 383: 541–548.
CAPTCHA Image