ارزیابی پیامد‌های درونی‌سازی اثرات جانبی آلودگی آب بر مدیریت کمی و کیفی حوضه آبریز زاینده‌رود

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زابل

2 دانشگاه شیراز- دانشگاه زابل

3 کشاورزی و منابع طبیعی رامین خوزستان

چکیده

بروز چالش‌های اخیر در وضعیت منابع آبی حوضه آبریز زاینده‌رود، منجر به آن گردیده است که زاینده‌رود نیز از آلودگی آب در امان نماند و تامین آب با کیفیت مناسب به عنوان یک چالش‌ اساسی در این حوضه محسوب گردد. از این‌رو ارائه یک الگوی کشت هدفمند از طریق کاهش اثرات جانبی آلودگی مصرف آب ناشی از فعالیت‌های کشاورزی برای حوضه آبریز رودخانه زاینده‌رود می‌تواند نقش موثری در مدیریت کمی و کیفی منابع آب حوضه ایفا نماید. برای این منظور مدل شبیه‌سازی هیدرولوژیکی (مدل WEAP) با مدل بهینه‌یابی اقتصادی تلفیق و در مرحله‌ی بعد، اثرات جانبی آلودگی آب با استفاده از مدل SWAT شبیه‌سازی و به‌عنوان ورودی و یک محدودیت زیست‌محیطی به مدل یکپارچه سطح حوضه اضافه شده است. داده‌های مورد نیاز این الگو به سه شیوه تحقیق پیمایشی، مطالعات و گزارشات اسنادی و استفاده از نظرات کارشناسان و خبرگان طی سال‌های آماری 91-1390 جمع‌آوری شد. نتایج پارامترهای هیدرولوژیکی در الگوی بهینه اقتصادی نشان داد که می‌توان با بکارگیری سیاست‌های حفاظت منابع آب، اثرات تغییر اقلیم در منطقه را تعدیل بخشید. همچنین مقایسه الگوی بهینه اقتصادی و اقتصادی-زیستی نشان داد که می‌توان ضمن بهبود بازده برنامه‌ای به میزان 12 میلیون ریال، میزان تلفات نیترات کمتر از حد مجاز در سطح حوضه را تحقق بخشید.

کلیدواژه‌ها


1- Akbari F., Taheri Borojeni G., Moridi A and Khazaei pool A. 2018. Investigating the effect of climate change on runoff the Aras River basin using the model SWAT. Journal of Environmental Science and Technology, 16:75-91.(in Persian)
2- Akhavan S.J., Abedi-Koupai S.F. Mousavi M. Afyuni S.S. Eslamian and K.C. Abbaspour. 2010. Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar watershed, Iran. J. Agric. Ecosystem and Environ. 139(4): 675- 688.
3- Amini A., Javan M., Eghbalzadeh A., and Ghasemi M.R. 2016. Evaluation of water resources management in Gamasiab basin of Kermanshah province using model WEAP. Journal of Water Resources Engineering, 10:13-18. (In Persian)
4- Arnold J.G., Allen P.M., Volk M., Williams J. R., and Bosch D.D. 2010a. Assessment of different representations of spatial variability on SWAT model performance. Trans. ASABE 53(5): 1433-1443.
5- Bagheri rahdaneh, M.R., Ghaemi Z., and Khajehzadeh A. 2018. The first conference of Soil and Water Management Tool (SWAT) in the management of water resources, Isfahan, Isfahan University of Technology.
6- Esteve P., Varela-Ortega C., Blanco-Gutierrez I., and Downing T. E. 2015. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics. 120, 49-58.
7- Eliasson J., 2015. The rising pressure of global water shortages. Nature 517 (7532), 6.
8- Gassman P.W., Reyes M., Green C.H., and Arnold J.G. 2007. The Soil and Water Assessment Tool: Historical development, applications, and future directions. Trans. ASABE 50(4): 1211- 1250.
9- Gohar A. A., Amer S.A., and Ward F.A. 2015. Irrigation infrastructure and water appropriation rules for food security. Journal of Hydrology, 520:85-100.
10- Han Y., Huang Y.F., Wang G.Q. and Maqsood I. 2011. A multi-objective linear programming model with interval parameters for water resources allocation in Dalian city. Water Resource Management, 25:449–463.
11- Iran Water Resource Management Company. 2016. Reports of integrated water resource management of the zayandehroud basin.
12- Kemanian A., Julich R.S., Manoranjan V.S., and Arnold J.G. 2011. Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: Theory and model testing. Ecol. Modelling 222(12): 1913-1921.
13- Knisel W.G., Foster G.R., and Leonard R.A. 1980. CREAMS: A system for evaluating management practice in Schaller. Agricultural Management and Water Quality. Lowa University Press. 178-199.
14- Leonard R.A., Knisel W.G., and Still D.A. 1987. GLEAMS: groundwater loading of agricultural management systems. Transactions of the ASAE, 30(5):1403-1418.
15- Li J., He L., Chen Y.Z., Song X.S., and Lu H.W., 2017b. A believe l groundwater management model with minimization of stochastic health risks at the leader level and remediation cost at the follower level. Stoch. Environ. Res. Risk Assess. 31 (10), 2547–2571.
16- Mimi Z., and Sawalhi B.I. 2003. A decision tool for allocating the waters of the Jordan River basin between all riparian parties. Water Resources Management, 17: 447–461.
17- Moriasi D.N., Arnold J.G., Van Liew M.W., Binger R.L., Harmel R.D., and Veith T. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed.
18- Nasabian S., Mohammadi H. and Kikha A.R. 2014. The effect of modification of cropping pattern on reducing pollution of agricultural activities. Journal of Environmental Science and Technology, 16:75-91.(in Persian)
19- Narula K.K, Gosain A.K. 2013. “Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin”. Science of the Total Environment 468–469 102–116.
20- Pei Y., and Zhao Y. 2012. Risk evaluation of groundwater pollution by pesticides in China: a short review. Procardia Environmental Sciences, 13: 1739 – 1747.
21- Reidsma P., Ewert F., Lansil A., and Leemans R. 2010. Adaptation to climate change and climate variability in European agriculture. The importance of farm level responses. European Journal of Agronomy. 32: 91-102.
22- Ranga Prabodanie R.A., Raffensperger J.F., Granr Read E., and Milke W. 2014. LP models for pricing diffuse nitrate discharge permits. Journal of Operational Research, 220: 87-109
23- Regional Water Company of Isfahan. 2016. Available online at: http://www.esrw.ir/.site.
24- Rong Q., Cai Y., Chen B., Shen Z., Yang Z., Yue W., and Lin X. 2018. Field management of a drinking water reservoir basin based on the investigation of multiple agricultural nonpoint source pollution indicators in north China. Ecological Indicators, 92, 113-123.
25- Salehi S., Chizari M., Sadighi H., and Bijani M., 2017. Assessment of agricultural groundwater users in Iran: a cultural environmental bias. Hydrogeology Journal, 26(1): 285-295. (in Persian)
26- Sheikh Zeinodin A. 2016. Determining the management strategies of the agricultural system of the irrigation and drainage network of Dorodzan, biological economic approach. PhD Thesis in Agricultural Economics, Faculty of Agriculture, Shiraz University. (in Persian)
27- Shoushtarian A. 2018. Analysis of Agricultural and Environmental Economic Policies under the Abar Basin Basin Basin, an approach to agricultural sustainability. PhD Thesis in Agricultural Economics, Faculty of Agriculture, Shiraz University. (in Persian)
28- Smith M., Thomas Nichols E., Vidaurre D., Winkler A.M., Behrens T.E.J., Glasser M.F., Ugurbil K., Barch D.M., Van Essen D.V., and Miller K.L. 2015. A positive-negative mode of population covariation links brain connectivity, demographics and behavior, 18, 1565-1567.
29- Tanaka S. K., Zhu T., Lund J.R., Howitt R.E., Jenkins M.W., Pulido M.A., Tauber M., Ritzema R.S., and Ferreira I.C. 2006. Climate warming and water management adaptation for California. Climate Change, 76, 361-387.
30- Tuppad P., Douglas-Mankin K.R., Lee T, Srinivasan R., and Arnold J.G. 2011. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Trans. ASABE 54(5): 1677-1684.
31- Van R.J., Veeren H.M. and Lorenz C.M. 2002. Integrated economic–ecological analysis and evaluation ofmanagement strategies on nutrient abatement in the Rhine basin. Journal of Environmental Management, 66: 361–376.
32- Ward F.A. 2014. Economic impacts on irrigated agriculture of water conservation programs in drought. Journal of Hydrology, 508, 114-127.
33- Wang R., Fang L., and Kalin L. 2011. Modelling effects of land use/cover changes under limited data. Eco hydrology, 4: 265–276.
34- Williams J.R., Arnold J.G., Kiniry J.R., Gassman P.W., and Green, C.H. 2008. History of model development at Temple, Texas. Hydrological Science Journal, 53(5): 948–960.
35- Yang L., Bai X., Zheng Khanna N., Yi S., Hu Y., Denga J., Gao H., Tuo L., Xianga SH., and Zhoub N. 2018. Water evaluation and planning (WEAP) model application for exploring the water deficit at catchment level in Beijing. Desalination and Water Treatment, 118:12–25.
36- Yates D., Sieber J., Purkey D., and Huber-Lee A. 2005. WEAP21—A demand-, priority-, and preference-driven water planning model,”model. Water International, 30 (4): 487-500.
37- Yazdanpanah T., Khodashenas, K., and Gahraman, B. 2008. Water Resource Management of basin by Weap (Case Study: Azgand basin).Agriculture Sience of thecnology. 22(1):211-222. (in Persian)
38- Zeinodini S., Anoori S., and Zahmatkesh Z. 2018. Application of simulati optimization approache to assess the effect of climate and management scenarios on a water resource system. Iran-Wate Resources Research, 14(5): 295-310. (in Persian)
39- Zu B., Saleh A., Jaynes D.B., and Arnold J.G. 2006. Evaluation of SWAT in simulating nitrate nitrogen and atrazine fates in a watershed with tiles and potholes. Trans. ASABE 49(4): 949- 959.
CAPTCHA Image