با همکاری انجمن اقتصاد کشاورزی ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بین الملل امام خمینی (ره) قزوین

2 دانشگاه پیام نور تهران شرق

3 دانشگاه زابل

چکیده

در این مطالعه، ابتدا با بهره‌گیری از داده های سری زمانی سال های 1378-1360 و مدل های گردش عمومی (GCM) اثرات گازهای گلخانه‌ای بر متغیرهای اقلیمی دما و بارش تحت سناریوهای انتشار A1B، A2 و B1 ارزیابی شد. در ادامه، جهت بررسی میزان اثرگذاری متغیرهای اقلیمی بر عملکرد محصولات منتخب از روش حداقل مربعات معمولی (OLS) استفاده شد. با لحاظ نمودن نتایج تحلیل رگرسیونی در مدل برنامه‌ریزی ریاضی مثبت (PMP)، تغییرات به وجود آمده در تولیدات بخش کشاورزی، سود ناخالص کشاورزان و ارزش اقتصادی آب آبیاری نسبت به سال پایه تحلیل و بررسی شد. داده های موردنیاز از طریق ایستگاه های هواشناسی و ادارات ذی‌ربط در استان قزوین جمع‌آوری شد. تخمین توابع رگرسیونی در بسته نرم افزاری EViews و حل مدل PMP در نرم‌افزار GAMS صورت گرفت. نتایج نشان داد که با انتشار گازهای گلخانه ای تحت سناریوهای مورد بررسی، میانگین سالانه متغیرهای اقلیمی دما و بارش به ترتیب 64/1 تا 28/2 درجه سانتی گراد و 92/0- تا 1/1- میلی‌متر تغییر می کند و سبب کاهش عملکرد اغلب محصولات منتخب اراضی پایین‌دست سد طالقان می‌شود. همچنین، مجموع سطح زیرکشت محصولات منتخب 18/2 تا 09/4 درصد، مجموع آب مصرفی 67/1 تا 18/5 درصد و مجموع سود ناخالص کشاورزان 93/1 تا 72/3 درصد کاهش و ارزش اقتصادی آب 27/4 تا 6/13 درصد نسبت به سال پایه افزایش می یابد. در پایان، به منظور کاهش میزان انتشار گازهای گلخانه ای در مجاورت اراضی پایین دست سد طالقان، توصیه می شود که دولت از ابزارهای تنبیهی (عوارض سبز) برای واحدهای آلاینده استفاده نموده و بخش های خصوصی را در اجرای طرح های جنگل داری در مجاورت شهرک‌های صنعتی مشارکت دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Economic Analysis of the Effects of Climate Change Induced by Greenhouse Gas Emissions on Agricultural Productions and Available Water Resources (Case Study: Down Lands of the Taleghan Dam)

نویسندگان [English]

  • M.M. Mozaffari 1
  • A. Parhizkari 2
  • M. Hoseini Khodadadi 3
  • R. Parhizkari 1

1 Imam Khomeini International University Qazvin

2 Researcher of Agriculture and Natural Resources Research Center of Qazvin Provinc

3 University of Zabol

چکیده [English]

Introduction: Greenhouse gases absorb the radiation reflected from the earth surface which would otherwise be sent back into space. The composition and mixture of these gases make life on earth possible. In recent years, human activity has affected both the composition and mixture of the atmosphere, modifying the climate. When climate changes, crop production is affected. There are many studies that consider the type and amount of production changes for particular crops, places and scenarios. Others attempt to expand knowledge about production changes and their impacts on economy and regional welfare. Climate change affects agriculture through direct and indirect affects i.e. temperature, and precipitation changes in the biological and physical environment. Restriction in water availability is one of the most dramatic consequences of climate change for the agricultural sector. Water availability is expected to be even more limited in the future. Scarcity of water is due to potential evapotranspiration increase. It is related to increase in air and earth surface temperatures. This phenomenon is important in low-precipitation seasons, and is even more severe in dry areas. The number of regions with loss of soil moisture is expected to increase, resulting in direct economic consequences on the production capacity. Considering the above decisions, the main objective of this paper is to integrate climate change into agricultural decision-making by using an Economic Modeling System to identify the impacts of climate change induced by greenhouse gas emissions on agricultural sector productions and available water resources in the down lands of the Taleghan Dam.
Materials and Methods: In this study, the effects of greenhouse gases on climate variables of temperature and precipitation under emission scenarios A1B, A2 and B1 were evaluated using time series data from 1981- 2008 and General Circulation Models (GCM). Then Ordinary Least Squares (OLS) was used to survey the impacts of climate variables on the selected products yield. Changes in agricultural production, farmer’s gross profit and economic value of irrigation water were analyzed and compared with the base year by the regression analysis results in the Positive Mathematical Programming (PMP) model. This methodology that was developed by Howitt (1995) to calibrate agricultural supply models has been used to link biophysical and economic information in an integrated biophysical and economic modeling framework and to assess the impacts of agricultural policies and scenarios. These models are also accepted for analyzing the impact of climate change and water resources management policies and scenarios. The PMP model used in this paper is a three-step procedure in which a non-linear cost function is calibrated to observe values of inputs usage in agricultural production. In the basic formulation, the first step is a linear program providing marginal values that are used in the second step to estimate the parameters for a non-linear cost function and a production function. In the third step, the calibrated production and cost functions are used in a non-linear optimization program. The solution to this non-linear program calibrates to observed values of production inputs and output. The required data in this paper were collected from meteorological stations and the relevant agencies in the Qazvin province. Regression functions estimated in Eviews software package and the PMP model were solved in GAMS (General Algebraic Modeling System) software.
Results and Discussion: The results obtained in this paper showed that with emissions of greenhouse gases under the studied scenarios (A1B, A2 and B1), the average annual climate variables of temperature and precipitation changes from 1.64 to 2.28 °C and from20.92 to 1.1 mm, respectively. With these change, the yield of the most selected products decreases in the down lands of Taleghan Dam. Moreover, the obtained results showed that with emissions of greenhouse gases under the scenarios A1B, A2 and B1, the total acreage of the selected products changes from 2.18 to 4.09 percent. Total used water also decreases from 1.67 to 5.18 percent. Moreover, with emissions of greenhouse gas under the above scenarios total farmer’s gross profit decreases from 1.93 to 3.72 percent. However, the economic value of water increases from 4.27 to 13.6 percent in comparison with the base year.
Conclusion: In this study finally, in order to reduce greenhouse gas emissions in the vicinity of the down lands of the Taleghan Dam, it is recommended that the government should use punitive tools (green complications) for polluting units and serve the private sectors in forestry projects in the vicinity of the industrial towns.

Keywords: Agricultural productions, Climate change, Greenhouse Gases, Positive Mathematical Programming, Taleghan Dam

کلیدواژه‌ها [English]

  • Agricultural productions
  • Climate change
  • Greenhouse Gases
  • Positive Mathematical Programming
  • Taleghan Dam
Ababaei B., Sohrabi T., Mirzaei F. and Karimi B. 2011. Climate Change Impact on Wheat Yield and Analysis of the Related Risks (Case Study: Esfahan Ruddasht Region). Journal of Soil and Water Knowledge, 20(3): 135-149.
2- Abrishami H. 2005. Foundations of Econometrics, Third Edition, published by Tehran University, Pp: 11-43.
3- Angel J. 2008. Potential impacts of climate change on water availability. Illinois State Water Survey, Institute of Natural Resources Sustainability, 12: 397-409.
4- Arnell N.W. 2003. Relative effects of multi- decadal climatic variability and changes in the mean and variability of climate due to global warming: future stream flows in Britain. Hydrology, 270: 119-213.
5- Cacho O., Hean R., Ginoga K. and Wise R. 2008. Economic potential of land- use change and forestry for carbon sequestration and poverty reduction. Part 1 Australian Centre for International Agricultural Research, Canberra, No: 33-67.
6- Darijani A., Yazdani S., Sadroleshrafi M. and Peykani Gh. 2006. Extraction of shadow prices of environmental pollutants: use random function output distance. Journal of Agricultural Science and Technology, 20(3): 165- 176 (In Persian with English abstract).
7- Department of Energy. 2008. Detailed report on the construction of Taleghan Dam and commissioning of its power plant, Department of Energy, Tehran, Iran, 83 p (In Persian).
8- Department of Energy. 2011. Greenhouse gas emissions and their effects on air and climate system in country, Environmental Protection Agency, 37 Pp.
9- Department of Environment Qazvin. 2013. The annual reports of the environmental pollution caused by emissions of greenhouse gases in the vicinity of industrial estates, 37 p (In Persian).
10- Energy balance sheet. 2012. Power and energy macro-planning office, reports on greenhouse gas emissions and their environmental impact, page 67 (In Persian).
11- Gorbani M., Darizani A., Kochaki A. and Matlabi M. 2009. Estimate the environmental costs of greenhouse gas emissions in dairy farms of Mashhad. Journal of Agricultural Economics and Development, 17(66): 43-62 (In Persian with English abstract).
12- Griffin R.C. 2006. Water Resource Economics: The Analysis of Scarcity Policies and Projects. MIT Press, Cambridge, Mass, 68 Pp.
13- He L., Horbulyk T.M., Ali M.K., Roy D.G.L. and Klein K.K. 2012. Proportional water sharing vs. seniority- based allocation in the Bow River basin of Southern Alberta. Agricultural Water Management, 104: 21-31.
14- Howitt R.E., Medellin-Azuara J., MacEwan D. and Lund R. 2012. Calibrating disaggregate economic models of agricultural production and water management. Science of the Environmental Modeling and Software, 38: 244-258.
15- Intergovernmental Panel on Climate Change (IPCC). 2007. The scientific Basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press. New York, USA, No: 996.
16- Intergovernmental Panel on Climate Change (IPCC). 2010. Climate Change. Synthesis Report of the Forth Assessment Report, IPCC, No: 158.
17- Kaltsas A.M., Mamolos A.P., Tsatsarelis C.A., Nanos G.D. and Kalburtji K.L. 2007. Energy budget in organic and conventional olive groves, Agriculture Ecosystem Environ, (122): 243-251.
18- Kochaki A. and nasiri M. 2008. Impact of climate change on wheat yield with increasing concentration in Iran and assessment and adaptation strategies, Journal of Iran- Agricultural Research, 6(1): 139-153 (In Persian with English abstract).
19- Kwon O.S., Yun W.C. and Hwan D. 2005. Market value for thermal energy of cogeneration: using shadow price estimation applied to cogeneration systems in Korea, Energy Policy, 33: 1789-1792.
20- Lehtonen H., Peltola J. and Sinkkonen M. 2006. Co-effects of climate policy and agricultural policy on regional agricultural viability in Finland, Agricultural System, (88): 472-493.
21- MasahBavani A., Morid S. and Mohammadzade M. 2009. Evaluating different AOGCMs and downscaling procedures in climate change local impact assessment studies. Journal of the Earth and Space Physics, 36(4): 99-110 (In Persian with English abstract).
22- Medellan-Azuara J., Harou J.J. and Howitt R.E. 2011. Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology. Science of the Agricultural Water Management, 108: 73–82.
23- Moradi A. and Aminian M. 2012. Greenhouse gas emissions in Iran in year 2009, Journal of transplanting Science, 3(1): 55-63 (In Persian with English abstract).
24- Parhizkari A. 2013. Determination economic value of irrigation water and farmer’s response to price and non-price policies in Qazvin province, the thesis submitted for the degree of MSc in the field of agricultural economics, University of Zabol, Iran, 130 Pp.
25- Parhizkari A. and Sabuhi M. 2013. Analysis of the economic and welfare impacts of establishment irrigation water market in Qazvin province, Journal of Agricultural Economics and Development, 27(4): 338-350 (In Persian with English abstract).
26- Parhizkari A. and Sabuhi M. 2013. Economic analysis of effects of technology development and mechanization on agricultural sector production in Qazvin province using positive mathematical programming model, Agricultural Economics Researches, 5(4):1-23 (In Persian with English abstract).
27- Parhizkari A., Sabuhi M. and Ziaee S. 2013. Simulation water market and analysis of the effects irrigation water sharing policy on cropping patterns under conditions of water shortage, Journal of Agricultural Economics and Development, 27(3): 242-252 (In Persian with English abstract).
28- Pathak H. and Wassmann R. 2007. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients, Agriculture System, 94(2): 807-825.
29- Petersen E., Schilizzi S. and Bennett D. 2003. The impact of greenhouse gas abatement policies on the predominantly grazing systems South-Western Australia, Agricultural System, 78(1): 369-386.
30- Pourmohammadi S. and Molkinejad H. 2013. Classification of congruent climate zones affected by climate change and heating scenarios of greenhouse gas emissions, Journal Watershed Management, 4(8): 56-78 (In Persian with English abstract).
31- Rohm O. and Dabbert S. 2003. Integrating agricultural environmental programs into regional production models: an extension of positive mathematical programming, American Journal of Agricultural Economics, 85(1): 254-265.
32- Sadat Ashofte P. and Masahi Bavani A. 2011. Investigation of AOGCM Model Uncertainty and Emission Scenarios of Greenhouse Gases Impact on the Basin Runoff under Climate Change, Case study Gharanghu Basin, East Azerbaijan, Iran-Water Resources Research, 8(2): 36-47 (In Persian with English abstract).
33- Sanikhani H., Dinajoh Y., Pouryosef S. and Solati B. Effects of climate change on catchment runoff Ajichay East Azerbaijan province, Journal of Soil and Water, 27(6): 1225-1234 (In Persian with English abstract).
34- Subak S. 1999. Analysis global environmental costs of beef production, Ecological Economics, 30: 79-91.
35- Wilby R.L. and Harris I. 2006. A frame work for assessing uncertainties in climate change impact: low flow scenarios for the River Thames, UK, Water Resources Research, 42(2):1-10.
CAPTCHA Image