Document Type : Research Article
Authors
1 Khozestan
2 Tehran
3 Zabol University
Abstract
Introduction: The importance and necessity of regional analysis of cropping pattern could be due to the need of regional balance and present strategies to achieve balance in decision making and allocation of agricultural production resources. The regional planning is a systematic attempt to choose the best available methods in order to achieve a specific goal in a region. Agriculture planning problems are important from both social and economic viewpoints. They involve a complex interaction of nature and economics. Due to the increase of population, there is always a need for more production to meet the ever increasing demand. One way of achieving high productivity is to increase the area under cultivation. Third -world countries like Iran losing land due to population growth. Agricultural planning problems in terms of social, environmental, and economic issues are important. Decision making in agriculture is generally complicated so that farmers are facing very often conflicting objectives. The scope of this paper is to design and implement a multi-objective mathematical programming model for Isfahan province that optimizes the production plan of agricultural regions taking into account the available resources. Application of the proposed model to the case study of the Isfahan province demonstrates the reliability and flexibility of the model.
Materials and Methods: In the formulation of the proposed model, set restrictions on irrigation water, production inputs (land, fertilizer, and etc.), and economic variables, as well as the minimum and maximum demand, are described. Also, the different objectives of economics (Gross margin maximization of agricultural activities), social (Maximizing the number of labor in agricultural production) and environmental (Minimizing the use of irrigation water and the cost of chemical fertilizers and pesticides) was considered. Fuzzy multi-objective linear programming model was used to solve the proposed model. As study regions, the information of 23 cities located in Isfahan province, Iran by providing questionnaires and statistical data are taken into account. To expand the potential use of the model, the model solution is compared with the existing crop plan of the study regions. Using Access and SQL server database software to manage and initial processing of data and GAMS software to solve the optimization model due to a large number of information, equations and variables used in the proposed model was inevitable. Some parameters also related to the topic of energy such as the total energy produced, the energy produced per hectare, and energy produced per unit of irrigation water are considered.
Results and Discussion: The cultivation regional planning model for Isfahan province was programmed in GAMS software. The importance of each of the objectives were summarized by Jehad-Keshavarzi organization experts of Isfahan province. The weights are 0.3, 0.05, 0.15, and 0.5 for maximizing gross margin, minimizing the use of irrigation water, maximizing the number of labor, and minimizing the cost of fertilizers and pesticides, respectively. The results showed that the main groups of cereals and for ages were reduced from all optimized models. According to the cropping pattern in the multi-objective programming model, two main groups of cereals and for ages have significantly reduced the crop pattern compared to the current and this reduction was32 and58percent, respectively. MOP model proposed reducing the irrigation water use by 10 percent, increase the gross margin by 24 percent, and increase the production by 10 percent. The total energy produced, the energy produced per hectare, and energy produced per unit of irrigation water reduced in all optimized models.
Conclusions: The objective of this study is to present a cultivation regional planning with the multi-objective model for optimal allocation of land under cultivation and proposes an annual agricultural plan for different crops. The output of our research may become a useful analytical tool for agricultural planners. In this study, we have been able to demonstrate that the multi-objective programming approach is a better technique over a single objective criterion when multiple conflicting objectives are involved. According to the results, the most limiting factor in cultivation regional planning is irrigation water. Also, the proposed model offers a reduction in the area under cultivation. So, using reduced irrigation water availability policies to reduce the total cultivated area is recommended. The reduction of energy produced in all optimized model can be a suitable research topic to add restrictions to the proposed model. Some cities like Najaf-abad (in the main groups of horticultural and pharmaceutical crops), Naein (in the main groups of Industrial crops), and Mobarakeh (in the main groups of kitchen garden) have the potential to expand the area under cultivation and can be adopted appropriate promotional activities in these cases.
Keywords
Send comment about this article