Document Type : Research Article-en
Authors
Department of Agricultural Economics, Faculty of Agriculture, Shiraz University, Shiraz, Iran
Abstract
In recent decades, the significance of the issue of climate change has escalated due to its intensified impacts, potentially diminishing or halting economic growth, particularly in developing countries and vulnerable sectors such as agriculture. Climate change may be considered the most important and complex human challenge. Among the economic effects, trade variables have been examined inadequately. Accordingly, the focus of this study is to investigate the impact of climate change on the export and import of agricultural products in Iran over a forty-year horizon, which was carried out using a dynamic input-output model. This study uses scenarios of temperature anomaly to examine the impact of climate change on different sectors of Iran’s economy. The findings indicate that climate change has a significant impact on the growth of both exports and imports of agricultural products. Under normal conditions without climate change, the average annual growth rate of agricultural product imports is 2.7 percent. However, this rate decreases to 1-1.8 percent when different climate change scenarios are taken into account. Regarding the exports, the corresponding value is 2.75 percent, expected to be reduced to 0.55-1.8 percent. In addition, it was found that agricultural trade will be dominated by cereals import. Also, the total trade of the Iranian economy will change in favor of non-agricultural commodities
Keywords
Main Subjects
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.
- Abbasi, F., Kohi, M., Flamarzi, Y., Javanshri, Z., Malbousi, S., & Babaeian, I. (2019). Investigation and analysis of Iran's annual temperature and precipitation trend (2017-1988). Nivar, 43(106-107), 36-49. https://doi.org/30467/NIVAR.2019.184059.1128
- Alavi, S.E., & Mohammadi, M. (2023). Freedom and environmental performance: evidence from MENAT countries. Journal of Agricultural Economics and Development, 37(2), 157-176. https://doi.org/10.22067/JEAD.2023.81572.1184
- AlShehabi, O.H. (2013). Modeling energy and labor linkages: A CGE approach with an application to Iran. Economic Modeling, 35, 88-98.
- Antonelli, M., Tamea, S., & Yang, H. (2017). Intra-EU agricultural trade, virtual water flows and policy implications. Science of the Total Environment, 587, 439-448. https://doi.org/1016/j.scitotenv.2017.02.105
- Aroche Reyes, F., & Marquez Mendoza, M.A. (2021). Demand-driven and supply-sided input–output models. Journal of Quantitative Economics, 19, 251-267. https://doi.org/10.1007/s40953-020-00229-5
- Baker, J.S., Havlík, P., Beach, R., Leclère, D., Schmid, E., Valin, H., & McFarland, J. (2018). Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios. Environmental Research Letters, 13(6), 064019. https://doi.org/1088/1748-9326/aac1c2
- Balogh, J.M., & Jámbor, A. (2020). The environmental impacts of agricultural trade: A systematic literature review. Sustainability, 12(3), 1152. https://doi.org/10.3390/su12031152
- Bourgeon, J.M., & Ollivier, H. (2012). Is bioenergy trade good for the environment?. European Economic Review, 56(3), 411-421. https://doi.org/10.1016/j.euroecorev.2011.11.002
- Burke, M., Hsiang, S.M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235-239. https://doi.org/10.1038/nature15725
- Climate Knowledge Portal (CCKP). (2021). https://climateknowledgeportal.worldbank.org/download-data
- Dalagnol, R., Gramcianinov, C.B., Crespo, N.M., Luiz, R., Chiquetto, J.B., Marques, M.T., & Sparrow, S. (2022). Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change?. Climate Resilience and Sustainability, 1(1), e15. https://doi.org/10.1002/cli2.15
- Dalir, Z., Farajzadeh, Z., & Zibaei, M. (2021). Economic and environmental driving factors of fires in Iranian forests and the controlling strategies. Agricultural Economics and Development, 29(1), 25-55. https://doi.org/10.30490/aead.2021.292942.1071
- Dang, Q., & Konar, M. (2018). Trade openness and domestic water use. Water Resources Research, 54(1), 4-18. https://doi.org/1002/2017WR021102
- Dell, M., Jones, B.F., & Olken, B.A. (2014). What do we learn from the weather? The new climate-economy literature. Journal of Economic Literature, 52(3), 740-98. https://doi.org/10.1257/jel.52.3.740
- Dietz, S., & Stern, N. (2015). Endogenous growth, convexity of damages and climate risk: How Nordhaus' framework supports deep cuts in carbon emissions. Economic Journal, 125, 574–620. https://doi.org/10.1111/ecoj.12188
- Donati, F., Aguilar-Hernandez, G.A., Sigüenza-Sánchez, C.P., de Koning, A., Rodrigues, J.F., & Tukker, A. (2020). Modeling the circular economy in environmentally extended input-output tables: Methods, software and case study. Resources, Conservation and Recycling, 152, 104508. https://doi.org/10.1016/j.resconrec.2019.104508
- Fankhauser, S., & Tol, R.S. (2005). On climate change and economic growth. Resource and Energy Economics, 27(1), 1-17. https://doi.org/10.1016/j.reseneeco.2004.03.003
- (2023). https://www.fao.org/faostat/en/#data/OEA
- Farajzadeh, Z. (2018). Emissions Tax in Iran: Incorporating pollution disutility in a welfare analysis. Journal of Cleaner Production, 186, 618-631.
- Farajzadeh, Z., Bakhshoodeh, M., & Zibaei, M. (2012). A general equilibrium analysis of trade liberalization impacts on agriculture and environment. African Journal of Agricultural Research, 7(31), 4390-4400. https://doi.org/10.5897/AJAR12.884
- Farajzadeh, Z., Ghorbanian, E., & Tarazkar, M.H. (2022). The shocks of climate change on economic growth in developing economies: Evidence from Iran. Journal of Cleaner Production, 372, https://doi.org/10.1016/j.jclepro.2022.133687
- Farajzadeh, Z., Zhu, X., & Bakhshoodeh, M. (2017). Trade reform in Iran for accession to the World Trade Organization: Analysis of welfare and environmental impacts. Economic Modelling, 63, 75-85.
- Galbusera, L., & Giannopoulos, G. (2018). On input-output economic models in disaster impact assessment. International Journal of Disaster Risk Reduction, 30, 186-198. https://org/10.1016/j.ijdrr.2018.04.030
- Ghaffari Esmaeili, S.M., Akbari, A., & Kashiri Kolaei, F. (2019). The impact of climate change on economic growth of agricultural sector in Iran (Dynamic computable general equilibrium model approach). Journal of Agricultural Economics and Development, 32(4), 333-342. https://doi.org/10.22067/JEAD2.V32I4.69897
- Gharibnavaz, M.R., & Waschik, R. (2015). Food and energy subsidy reforms in Iran: A general equilibrium analysis. Journal of Policy Modeling, 37, 726–74.
- Hoegh-Guldberg, O., & Bruno, J.F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328(5985), 1523-1528. https://doi.org/10.1126/science.1189930
- Hope, C. (2006). The marginal impact of CO2 from PAGE2002: An integrated assessment model incorporating the IPCC's five reasons for concern. Integrated assessment, 6(1), 19-56.
- Jabilles, E.M.Y., Cuizon, J.M.T., Tapales, P.M.A., Urbano, R.L., Ocampo, L.A., & Kilongkilong, D.A.A. (2019). Simulating the impact of inventory on supply chain resilience with an algorithmic process based on the supply-side dynamic inoperability input–output model. International Journal of Management Science and Engineering Management, 14(4), 253-263. https://doi.org/10.1080/17509653.2018.1555693
- Jebli, M.B., & Youssef, S.B. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological Indicators, 74, 295-301. https://doi.org/10.1016/j.ecolind.2016.11.032
- Liu, L., Huang, G., Baetz, B., Cheng, G., Pittendrigh, S.M., & Pan, S. (2020). Input-output modeling analysis with a detailed disaggregation of energy sectors for climate change policy-making: A case study of Saskatchewan, Canada. Renewable Energy, 151, 1307-1317. https://doi.org/1016/j.renene.2019.11.136
- Malakootikhah, Z., & Farajzadeh, Z. (2020). Climate change impact on agriculture value-added. Agricultural Economics and Development, 28(3), 1-30. (In Persian). https://doi.org/10.22067/jead2.v34i2.86135
- Manuel, L., Chiziane, O., Mandhlate, G., Hartley, F., & Tostão, E. (2021). Impact of climate change on the agriculture sector and household welfare in Mozambique: an analysis based on a dynamic computable general equilibrium model. Climatic Change, 167(1), 1-18. https://doi.org/10.1007/s10584-021-03139-4
- Miller, R.E., & Blair, P.D. (2009). Input-output analysis: foundations and extensions. Cambridge university press.
- Mosavi, S.H., Soltani, S., & Khalilian, S. (2020). Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agricultural Water Management, 241, 106332. https://doi.org/10.1016/j.agwat.2020.106332
- Nordhaus, W.D. (1992). Optimal greenhouse-gas reductions and tax policy in the" DICE" model. The American Economic Review, 83(2), 313-317.
- Pakmehr, S., Yazdanpanah, M., & Baradaran, M. (2020). How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran. Land Use Policy, 99, 104798. https://doi.org/10.1016/j.landusepol.2020.104798
- Piontek, F., Kalkuhl, M., Kriegler, E., Schultes, A., Leimbach, M., Edenhofer, O., & Bauer, N. (2019). Economic growth effects of alternative climate change impact channels in economic modeling. Environmental and Resource Economics, 73(4), 1357-1385. https://doi.org/10.1007/s10640-018-00306-7
- Swiss Re Institute. (2021). The economics of climate change: no action not an option. 13.
- Tol, R.S. (2009). The economic effects of climate change. Journal of economic perspectives, 23(2), 29-51. https://doi.org/10.1257/jep.23.2.29
- Tsigaris, P., & Wood, J. (2019). The potential impacts of climate change on capital in the 21st century. Ecological economics, 162, 74-86. https://doi.org/10.1016/j.ecolecon.2019.04.009
- (2017). https://unfccc.int/conference/glasgow-climate-change-conference-october-november-2021.
- Vatankhah, T., Moosavi, S.N., & Tabatabaei, S.M. (2020). The economic impacts of climate change on agriculture in Iran: a CGE model analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(16), 1935-1949. https://doi.org/10.1080/15567036.2019.1604903
- Walters, B.B. (2017). Explaining rural land use change and reforestation: a causal-historical approach. Land Use Policy, 67, 608-624. https://doi.org/10.1016/j.landusepol.2017.07.008
- Weinzettel, J., & Wood, R. (2018). Environmental footprints of agriculture embodied in international trade: sensitivity of harvested area footprint of Chinese exports. Ecological Economics, 145, 323-330. https://doi.org/10.1016/j.ecolecon.2017.11.013
- Weitzman, M.L. (2012). GHG targets as insurance against catastrophic climate damages. Journal of Public Economic Theory, 14, 221–244. https://doi.org/10.1111/j.1467-9779.2011.01539.x
- World Bank, (2022). https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=IR-1W.
- Zolanvari Shirazy, S., & Farajzadeh, Z. (2023). Determinants of agricultural export and trade balance in Iran. Journal of Agricultural Economics & Development, 36(4), 413-429. https://doi.org/10.22067/jead.2023.77925.1148
Send comment about this article