با همکاری انجمن اقتصاد کشاورزی ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 اقتصاد کشاورزی. دانشکده کشاورزی. دانشگاه فردوسی مشهد

چکیده

استفاده بیش از حد از منابع طبیعی، تأثیرات نامطلوب فرآیند تولید بر محیط‌زیست و افزایش نگرانی در این زمینه، دلیل اصلی توجه به پایداری است. بنابراین، اقدام به ایجاد پایداری در فرآیند تولید برای اطمینان از تاب‌آوری و پایداری، امری ضروری است. هدف از این مقاله، دستیابی به یک استراتژی مناسب برای تولید بهینه با حداکثر تاب‌آوری و پایداری در واحدهای صنعتی پرورش گاو شیری است. از این‌رو، در این پژوهش، شاخص تاب‌آوری و پایداری از طریق ادغام شاخص‌های زیست‌محیطی، اقتصادی، اجتماعی، تکنولوژیکی و سیاستی، و با استفاده از برنامه‌ریزی ریاضی غیرخطی، طراحی و مدل‌سازی گردید. شاخص پیشنهادی در واحدهای صنعتی پرورش گاوشیری استان خراسان رضوی (شهرستان مشهد و حومه) در سال 1395 مورد مطالعه و ارزیابی قرار گرفت. نتایج حاصل از الگوریتم ژنتیک هوشمند نشان داد که مدل پیشنهاد شده می‌تواند تاب‌آوری و پایداری تولید در واحدهای پرورش گاو شیری را بهبود و سبب کاهش روند تخریب محیط‌زیست ناشی از تولید گردد. هم‌چنین، شاخص تاب‌آوری و پایداری به میزان 5/0 درصد و شاخص سودآوری حدود 23/0 درصد، افزایش، و انتشار گازهای گلخانه‌ای و شدت انرژی به‌ترتیب 09/0 درصد و 02/0 درصد، کاهش یافتند. مدل ارائه شده می‌تواند در زمینه‌های مختلف به‌منظور بهبود قابلیت تاب‌آوری و پایداری واحدهای صنعتی پرورش گاو شیری و سایر سیستم‌های تولید استفاده شود. هم‌چنین، پیشنهاد می‌شود فاکتورهایی چون میزان تولید شیر و هزینه تمام شده یک لیتر شیر، به مدل پیشنهادی اضافه، تا امکان مدیریت همزمان عوامل اثرگذار بر تاب‌آوری و پایداری واحد تولیدی برای مدیر واحد (دامدار) فراهم گردد. 

کلیدواژه‌ها

عنوان مقاله [English]

Determination of Resilience and Sustainability of Industrial Dairy Farms in Mashhad

نویسندگان [English]

  • L. Hassani 1
  • M. Daneshvar Kakhki 1
  • M. Sabouhi 2

1 Ferdowsi university of Mashhad

2 Ferdowsi university of Mashhad

چکیده [English]

Introduction: Over the last two decades, awareness of resilience and sustainability and also efforts to reduce unsustainable production patterns have significantly increased. Hence, it is crucial to examine the resilience and sustainability of production systems. Resilience explains how well production systems withstand and/or rebound from aberration. Sustainability concept based on Commission’s words is: “development that meets the needs of the present without compromising the ability of future generations to meet their own needs”. The important issue relevant to resilience and sustainability and the resilience of farms/agricultural systems is, whether resilience or sustainability can be considered as a property of a system or needs to be understood as a process. Since both of them are not essentially opposed but have various theoretical and methodological implications, it is necessary to define a resilience and sustainability indicator. So, it is required to have an intelligent objective function for fairly balancing between production systems and dimensions of sustainable production to fulfill economic benefit and the resulting environmental benefit, etc. Based on the existing published literature, studies focusing on both resilience and sustainability indicators in industrial dairy farms by using multi-objective non-linear programming and swarm intelligence algorithm have not been carried out. Therefore, it is the aim of the present study to design the “automata resilience and sustainability indicator” for industrial dairy farms. The objective function has a hierarchical structure and in order to integrate these pillars into a single score, a value between zero and one, Analytic Hierarchy Process (AHP) has been used that the value of one means complete sustainability.
Material and Methods: The objective function should be maximized which has 5 main indicators including, environmental, economic, social, technological and political issues. Each indicator has some sub-indicators. So, we designed and modeled formulas for all of them. The value of objective function is normalized, therefore, its maximum possible value is "one", which indicates the complete resilience and sustainability of dairy farms. The resilience and sustainability indicator is obtained at three levels. Eight types of constraint sets are considered. Then, the model has been implemented using data of 30[1] industrial dairy farms in Khorasan-Razavi province of Iran during 2016.
Results and Discussion: The resilience and sustainability indicator across all farms was obtained 0.43 and which was low. One of the main reasons of unsustainability and inflexibility of dairy farms under study is the unsuitable use of resources and inputs. Therefore, the proposed model (Automata Resilience and Sustainability Indicator Model) was designed and optimized. Based on result the optimum resilience and sustainability achievable for the proposed dairy farm is 0.9598 (95.98%). Thus, the proposed model succeeds in determining the dairy farms' resilience and sustainability. Furthermore, it helps in setting up other operational parameters as determining the amount of cow manure produced, the man-working hours and labor expenditure.  The obtained results should be further used as guidance for improving the resilience and sustainability of the manufacturing operation in dairy farms.
Conclusions: This study has introduced a formulation for a resilience and sustainability problem in process of production in the industrial dairy farm. The contribution of the proposed formulation is its ability to addresses all pillars of resilience and sustainability at the producing level. One of the main advantages of the proposed measure of resilience and sustainability is data collection that relies on data usually collected in all farms for revenue and cost analysis, cattle diet and quality control. This fact makes the model applicable to facilities introducing resilience and sustainability concepts. Thus contributes to promoting the implementation of sustainable practices in agricultural production, especially in developing countries, where still have a lack of resilience and sustainability awareness and related legislation. Using weight is important to the application of the objective function and also makes the model suitable for its intended usage in the dairy farms of developing countries. This model is applicable in the area of the optimum dairy cattle nutrition, rising profitability, reducing feed cost, decreasing GHG, managing the water and energy consumption, etc., by maximizing resilience and sustainability in dairy farms. Additionally, the results allow also for identifying the prospective measures for improving resilience and sustainability. Through results analysis, a strategy for developing resilience and sustainability can be well defined. Furthermore, the current research can be extended by integrating the model with life cycle assessment results, another producer support policies, dairy farms' capacity expansions and could also be applicable to other forms of agricultural systems by a bit changes in the decision variables and model parameters.
 
 
4- This data was gathered based on non-random sampling. Because, in non-random sampling, the sample individuals are selected among individuals who have a defined characteristics and based on researcher's opinion. The proposed model is designed for a sample dairy unit. In other words, the data obtained from non-random sampling were used only to determine the status of the studied samples.

کلیدواژه‌ها [English]

  • Genetic algorithm
  • Mathematical modeling
  • Resilience and Sustainability indicators
  • Industrial Dairy Farms
1- Al-Sharrah G., Elkamel A., and Almanssoor A. 2010. Sustainability indicators for decision-making and optimisation in the process industry: The case of the petrochemical industry. Chemical Engineering Science, 65(4): 1452-1461.
2- Aryanezhad M.B., and Hemati M. 2008. A new genetic algorithm for solving nonconvex nonlinear programming problems. Applied Mathematics and Computation, 199(1): 186-194.
3- Astigarraga L., and Ingrand S. 2011. Production flexibility in extensive beef farming systems. Ecology and Society, 16(1).
4- Beck A. 2014. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB (Vol. 19): Siam.
5- Beliakov G., Sola H.B., and Sanchez T.C. 2016. A practical guide to averaging functions (Vol. 329): Springer.
6- Bene C. 2013. Towards a quantifiable measure of resilience. IDS Working Papers, 434: 1-27.
7- Carr J. 2014. An introduction to genetic algorithms. Senior Project, 1: 40.
8- Commission, United Nations Brundtland. 1987. World Commission on Environment and Development (WCED): Our Common Future: Oxford: Oxford University Press.
9- Darnhofer I. 2014. Resilience and why it matters for farm management. European Review of Agricultural Economics, 41(3): 461-484.
10- De Freitas Pinto R.L.U., and Ferreira R.P.M. 2014. An exact penalty function based on the projection matrix. Applied Mathematics and Computation, 245: 66-73.
11- Erjavec E., Volk T., Rac I., Kožar M., Pintar M., and Rednak M. 2017. Agricultural support in selected Eastern European and Eurasian countries. Post-Communist Economies, 29(2): 216-231.
12- Fiksel J. 2006. Sustainability and resilience: toward a systems approach. Sustainability: Science, Practice, and Policy, 2(2).
13- Frorip J., Kokin E., Praks J., Poikalainen V., Ruus A., Veermäe I., and Ahokas J. 2012. Energy consumption in animal production-case farm study. Agronomy research Biosystem engineering. Special, 1: 39-48.
14- Galal Noha M., and Moneim Ahmed F Abdul. 2015. A mathematical programming approach to the optimal sustainable product mix for the process industry. Sustainability, 7(10): 13085-13103.
15- Gezer I., Acaroǧlu M., and Haciseferoǧullari H. 2003. Use of energy and labour in apricot agriculture in Turkey. Biomass and Bioenergy, 24(3): 215-219.
16- Glover J. 2012. Rural resilience through continued learning and innovation. Local Economy, 27(4): 355-372.
17- Hammond B., Berardi G., and Green R. 2013. Resilience in Agriculture: Small- and Medium-Sized Farms in Northwest Washington State. Agroecology and Sustainable Food Systems, 37(3): 316-339.
18- Kitani O., and Jungbluth T. 1999. CIGR handbook of agricultural engineering. Energy and Biomass Engineering, 5, 330.
19- Krebs J. 2002. McCance and Widdowson’s the composition of foods: summary edition, 6th summary ed: The Royal Society of Chemistry/Food Standards Agency, Cambridge/London.
20- Kuhlman T., and Farrington J. 2010. What is sustainability? Sustainability, 2(11): 3436-3448.
21- Meul M., Nevens F., Reheul D., and Hofman G. 2007. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agriculture, Ecosystems and Environment, 119(1): 135-144.
22- Mobtaker H., Keyhani A., Mohammadi A., Rafiee Sh., and Akram A. 2010. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment, 137(3): 367-372.
23- Mollenhorst H., Klootwijk C., van Middelaar C., van Zanten H., and de Boer I. 2014. A novel approach to assess efficiency of land use by livestock to produce human food. Paper presented at the Proceedings of the 9th International Life Cycle Assessment of Foods Conference (LCA Food 2014).
24- Morgan N.A., and Piercy Nigel F. 1998. Interactions between marketing and quality at the SBU level: influences and outcomes. Journal of the Academy of Marketing Science, 26(3): 190-208.
25- Naylor Rosamond L. 2009. Managing food production systems for resilience Principles of Ecosystem Stewardship (pp. 259-280): Springer.
26- Ozkan B., Akcaoz H., and Fert C. 2004. Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1): 39-51.
27- Park C.H., and Irwin Scott H. 2004. The profitability of technical analysis: A review.
28- Prendergast AC. 2008. IPCC–intergovernmental panel on climate change. Choice Curr. Rev. Acad. Libr, 45: 1570-1571.
29- Qobadi M., Mohammadzamani D., and Shahrami A. 2015. Evaluation of energy indi ces in Qazvin dairy farms using data envelopment analysis. Biomedical Engineering Journal, 4(4): 16.
30- Rafiee S., Khoshnevisan B., Mohammadi I., Aghbashlo M., and Clark S. 2016. Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: An Iranian case study. Science of the Total Environment, 562: 614-627.
31- Saaty Thomas L. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83-98.
32- Samuel Vijayalakshmi B., Agamuthu P., and Hashim MA. 2013. Indicators for assessment of sustainable production: A case study of the petrochemical industry in Malaysia. Ecological Indicators, 24: 392-402.
33- Schlink AC., Nguyen ML., and Viljoen GJ. 2010. Water requirements for livestock production: a global perspective. Soil and Water Management & Crop Nutrition Subprogramme, 6.
34- Tang K., Yang J., Chen H., and Gao S. 2011. Improved genetic algorithm for nonlinear programming problems. Journal of Systems Engineering and Electronics, 22(3): 540-546.
35- van Apeldoorn D., Kok K., Sonneveld M., and Veldkamp T. 2011. Panarchy rules: rethinking resilience of agroecosystems, evidence from Dutch dairy-farming. Ecology and Society, 16(1).
36- Von Mises, Ludwig. 2008. Profit and loss: Ludwig von Mises Institute.
37- Wells C.M. 2001. Total Energy Indicators of Agricultural Sustainability: Dairy Farming Case. Study Final Report. Report to MAF Policy. Department of Physics, University of Otago.
38- www.fao.org.
39- Yokota T., Gen M., and Li Y.X. 1996. Genetic algorithm for non-linear mixed integer programming problems and its applications. Computers and Industrial Engineering, 30(4): 905-917.
CAPTCHA Image