تخصیص بهینه آب سد قلعه چای عجب‌شیر بین محصولات کشاورزی در شرایط عدم حتمیت

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تبریز

چکیده

با توجه به اقلیم خشک و پراکنش نامناسب بارش در ایران، کشاورزی پایدار منوط به استفاده صحیح و علمی از منابع آب است. در مطالعه حاضر تخصیص بهینه آب سد قلعه چای عجب شیر در بخش کشاورزی با کاربرد مدل برنامه‌ریزی تصادفی بازه‌ای دومرحله‌ای مورد بررسی قرار گرفت. اطلاعات مورد نیاز محصولات منتخب منطقه (گندم، جو، سیب‌زمینی، پیاز، انگور، گردو، بادام و سیب) در سال 95-1394 از سازمان آب منطقه­ای و جهاد کشاورزی استان آذربایجان‌شرقی و در مواردی از طریق تکمیل پرسشنامه و مصاحبه حضوری با کشاورزان به صورت نمونه‌گیری تصادفی ساده گردآوری گردید و الگوریتم‌های لازم برای حل مدل، در بسته نرم­افزاری GAMS نوشته شد. نتایج مدل برنامه‌ریزی تصادفی بازه‌ای دو مرحله‌ای نشان داد که در صورت استفاده از روش بهینه‌سازی، در سطح جریان کم مقدار آب تخصیصی برای همه محصولات به غیر از بادام صفر بوده و در سطح جریان متوسط فقط به سیب‌زمینی، پیاز، گردو، بادام و سیب، آب اختصاص می‌یابد. در سطح جریان زیاد کل نیاز آبی گیاهان تأمین شده و کمبودی وجود نخواهد داشت. برای جبران کمبود آب در سطوح مختلف جریان، کشاورز می‌تواند از منابع کمکی استفاده کند که با استفاده از مدل توسعه یافته برنامه‌ریزی تصادفی بازه‌ای دومرحله‌ای، آلترناتیوهای بهینه برای هر محصول ارائه گردیده است. با توجه به نتایج می‌توان اظهار داشت با ارائه مدل بهینه، کشاورزان بهترین تصمیم ممکن را برای رسیدن به بیشترین سود اتخاذ می‌کنند و به سیاستگزاران بخش مدیریت منابع آب کمک می‌کند که در شرایط بحرانی از منابع آب به شکل بهینه استفاده کنند که در این صورت کمترین ناپایداری در استفاده از منابع آبی وجود خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Water Allocation of Ajbashir Qaleh Chay Dam among Agricultural Products under Uncertainty

نویسندگان [English]

  • M. Jafari Sani
  • B. Hayati
  • J. Nematian
  • M. Ghahremanzadeh
University of Tabriz
چکیده [English]

Introduction: Qaleh Chay dam basin is one of the largest irrigation regions for food production in Ajabshir and household livelihood mostly depends on agriculture but the occurrence of drought periods and extraction of underground water has led to a reduction in surface water and underground aquifers. Continuing this process will reduce the agricultural production and consequently the region will encounter economic crisis. On the other hand, the uncertainties of various factors such as rainfall and temperature, which are not easily quantified, would affect agricultural resource system. in current study in order to response to mentioned crisis and uncertainties, interval two-stage stochastic programming (ITSP) has been proposed for water allocation of Ajbashir Qaleh chay dam among agricultural products and the results have been compared with extended ITSP.
Materials and Methods: Interval two-stage stochastic programming (ITSP) is an effective alternative to deal with uncertainties and it can be formulated as follows:




 

 



Subject to:




(water availability constraint)

 



(water allocation goal constraint)

 



(non- negativity and technical constraint)

 



  where = system benefit; = net benefit to crop  per m3 of water allocated; = promised target of water allocation quantity for crop ; = deficit to crop  per m3 of water not delivered; = water deficit to crop  when the flow is ;  = the total amount of flow that take values   with probabilities  ; = water loss rate in transport process; = the maximum allowable allocation for crop ; = the total amount of crops; = type of crop. Extended ITSP is an effective alternative to cope with water scarcity. The model can be formulated as follows:




 

 



Subject to:


 



 

 



 

 



 

 



 

 



 

 



 

 



 
 
 



Where = cost of increasing 1 m3 water for crop  while using alternative ; = total number of alternatives; = available amount of water for crop  while using alternative ;  is a binary decision variable that takes 1 if crop  when using alternative  and the seasonal flow is .
Results and Discussion: The data for the selected products (wheat, barley, potato, onion, grape, walnut, almond and apple) were collected from Regional Water Authority and Agriculture Jihad Organization of East Azarbaijan in 2015-16, and in some cases, completed by a questionnaire. The model was written in the GAMS package. Results of ITSP showed that under the low flow level, the total amount of water allocated to all crops would be zero with the exception of almonds where the final allocation of water for it would be [3.64, 20.61]. therefor,Under the medium flow level, the allocation of water for potato, onions, walnuts, almonds and apples would be[0, 5.49], [0, 28.57], [1.30, 35.71], 31.43 and 20 ×1000 m3 respectively and it would be zero for others. Finally under high flow level there would be no water shortage for all products. Water shortages may occur when the seasonal water flows do not be adequate for the promised water allocation for each crop. In such cases users will have to utilize supplementary resources. The results of extended ITSP showed that for wheat, barley, onion, grape and almond the third alternative under low level and the first one under medium flow level can be used. For potato and apple under low level the first alternative and under medium flow level the third one can be applied. Both the first and the third alternative could be utilized for walnut if the flow level was low. Finally, comparing the value of the objective function of ITSP and extended ITSP showed that with the utilization of supplementary resources for satisfying the water needs, the net profit of the system decreases slightly.
Conclusion: In this paper, ITSP method was used to allocate water to agriculture products. The results showed that there was water scarcity for products on drought and normal years. Users can utilize supplementary resources to cope with water scarcity. An extended ITSP method is based on retrieving water shortage and its results revealed that the system net benefit decreases as supplementary water reservoirs were used for water shortages. Based on the results obtained, highlighting the irrigation efficiency is recommended.
 

کلیدواژه‌ها [English]

  • Ajabshir Qaleh Chay dam
  • Interval two-stage stochastic programming
  • Uncertainty
  • Water Resources
1- Azarakhshi M., Farzad Mehr J., Eslah M., and Sahabi H. 2013. Investigation of annual and seasonal changes in rainfall and temperature parameters in Iran's different whether regions. Journal of Rangeland and Watershed Management, 66(1): 1-16. (In Persian)
2- Bahrami Nasab M., Dourandish A., Shahnoushi N., and Kohansal M.R. 2015. Determine the optimal cropping pattern of Esfarayen county (Application of interval-valued fuzzy programming based on Infinite Alpha-Cuts). Iranian Journal of Agricultural Economics and Development Research, 46(1): 61-73. (In Persian with English abstract)
3- Dai Z.Y., and Li Y.P. 2013. A multistage irrigation water allocation model for agricultural land use planning under uncertainty. Agricultural Water Management, 129: 69-79.
4- East Azarbaijan Regional Water Authority. 2013.
5- Garg N.K., and Dadhich S.M. 2014. Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation. Agricultural Water Management, 140: 1–13.
6- Guo P., Huang G.H., Zhu H., and Wang X.L. 2010. A two-stage programming approach for water resources management under randomness and fuzziness. Environmental Modelling and Software, 25(12): 1573-1581.
7- Homayounifar M., and Rastegaripour F. 2010. Water allocation of Latyan dam between agricultural products under uncertainty. Journal of Agricultural Economics and Development, 24(2): 259-267. (In Persian)
8- Huang G. H., 1996. IPWM: an interval parameter water quality management model. Engineering Optimization + A35. 26(2): 79-103.
9- Huang G.H., and Loucks D.P. 2000. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering and Environmental Systems, 17(2): 95–118.
10- Huang Y., Li Y.P., Chen X., and Ma Y.G. 2012. Optimization of the irrigation water resources for agricultural sustainability in Tarim river basin, China. Agricultural Water Management, 107: 74-85.
11- Kang M., and Park S. 2014. Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations. Agricultural Water Management, 143: 131–141.
12- Li Y.P., Huang G.H., and Nie S.L. 2006. An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty. Advances in Water Resources, 29(5): 776–789.
13- Li Y. P., and Huang G. H. 2008. Interval-parameter two-stage stochastic nonlinear programming for water resources management under uncertainty. Water Resources Management, 22(6): 681-698.
14- Li M., and Guo P. 2014. A multi- objective optimal allocation model for irrigation water resources under multiple uncertainties. Applied Mathematical Modelling, 19: 4897-4911.
15- Miao D.Y., Huang W.W., Li Y.P., and Yang Z.F. 2014. Planning water resources systems under uncertainty using an interval-fuzzy de novo programming method. Journal of Environmental Informatics, 24(1): 11–23.
16- Momeni M., and Rezai N. 2009. Operation model of the Aras dam reservoir using dynamic programming. Journal of Industrial Management, 1: 139-152. (In Persian)
17- Nematian J. 2016. An extended two- stage stochastic programming approach for water resources management under uncertainty. Journal of Environmental Information, 27(2): 72-84.
18- Niu G., Li Y.P., Huang G.H., Liu J., and Fan Y.R. 2016. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. Agricultural Water Management, 166: 53-69.
19- Rastegaripour F., and Karbasi A. 2014. Optimal utilization of Lar dam reservoir inexact five stage stochastic programming. Agricultural Economics Research, 6(4): 21-37. (In Persian)
20- Rastegaripour F., and Sabouhi M. 2010. An Optimization model for Kardeh reservoir operation using interval-parameter, multi-stage, stochastic programming. Journal of Water and Sewage, No. 3: 88-98. (In Persian).
21- Regulwar D.G., and Gurav J.B. 2011. Irrigation planning under uncertainty –a multi objective fuzzy linear programming approach. Water Resource Management, 25(5): 1387–1416.
22- Sabouhi, M., Rastegaripour F., and Keikha A.A. 2009. Optimal allocation of Torogh dam water between agricultural and urban sectors by an Interval Parameter Fuzzy Two Stages Stochastic Programming under Uncertainty. Journal of Economy and Agriculture, 3(1): 31-53. (In Persian)
23- Sabouhi M., and Mojarad A. 2010. Application of game theory in the management of groundwater resources the upper watershed. Journal of Agricultural Economics and Development, 1: 1-12. (In Persian)
24- Sethi L.N., Panda S.N., and Nayak M.K. 2006. Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India. Journal of Agricultural Water Management, 83: 209-220.
25- Singh A. 2014. Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141: 23–29.
26- Zhao G. 2001. A log-barrier method with benders decomposition for solving two-stage stochastic linear programs. Mathematical Programming, 90: 507-53.
CAPTCHA Image