ارزیابی مدل های هیبرید در پیش بینی بازده نقدی سهام شرکت های کشاورزی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

پیش بینی بازده نقدی شرکت های کشاورزی فعال در بازار بورس نقش بسیار مهمی در تعیین تولید، توزیع، تقاضا و کاهش ریسک و عدم قطعیت بازاری ایفا می نماید. از این رو، توسعه روش های پیش بینی و بهبود عملکرد این روش ها برای صاحبان شرکت ها و همچنین فعالان بازار بورس امری ضروری است. لذا، مقایسه عملکرد و دقت روش های مختلف پیش بینی مقادیر بازده نقدی سهام شرکت های کشاورزی در بورس اوراق بهادار تهران هدف اصلی این مطالعه می باشد. در این مطالعه با استفاده از داده های ماهانه بازده نقدی طی دوره ی (1) 1388 تا (1) 1394و بر اساس معیارهای دقت و آزمون دایبولد و ماریانو، دقت پیش بینی روش های خطی (ARIMA و ARIMAX)، غیرخطی (NAR و NARX) و مدل های هیبرید (ARIMA-ANN و ARIMAX-ANN) مورد ارزیابی و مقایسه قرار گرفته است. با اضافه نمودن متغیرهای توضیحی نرخ ارز، نرخ بهره، نرخ تورم، قیمت نفت و مخارج دولت؛ این مطالعه سعی در پاسخگویی به این سؤال را دارد که آیا عملکرد مدل های پیش بینی خطی، غیرخطی و هیبرید به طور قابل توجهی بهبود می یابد یا خیر؟ نتایج مطالعه نشان داد که در مدل های خطی و غیرخطی، اضافه نمودن متغیرهای توضیحی خارجی موجب بهبود عملکرد پیش بینی می گردد؛ اما این یافته برای مدل های هیبرید برقرار نمی باشد. همچنین، نتایج مطالعه مؤید آن است که مدل های هیبرید در مقایسه با مدل های خطی و غیرخطی، از دقت و عملکرد بهتری در پیش بینی مقادیر بازده نقدی سهام شرکت های کشاورزی برخوردار می باشند. لذا به شرکت ها و سهامداران بازار بورس اوراق بهادار توصیه می گردد که از مدل های هیبرید در برنامه ریزی های مالی خود استفاده نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Hybrid Models for Cash Returns Prediction of Agricultural Companies

نویسندگان [English]

  • A. Dourandish
  • A.H. Tohidi
  • S. Soleimani Nejad
Ferdowsi University of Mashhad
چکیده [English]

Introduction: Providing an alternative route for mobilizing domestic savings, stock markets increase investment growth and, consequently, economic growth. Moreover, allocating better resources (through the concessions of labor division), the stock market plays an important role in economic growth. In addition to the positive effects of the stock market on economic growth, this market has high potential to create employment (direct and indirect). According to the existing conditions of the agriculture sector in meeting the needs of the society have increased the importance of this sector. Thus, it is necessary to use the stock exchange of the agricultural sector as one of the most important tools to solve the problems of this sector, improve market efficiency, increase productivity and provide financial requirements of agricultural companies in this market. Concerning the number of shares, stock volume and variety of products, agricultural exchange is the largest stock exchange. Cash returns can be used as a criterion to identify the economic status of agricultural firms in the stock market; identifying this trend plays an important role in financial planning and investment decisions. So, the main objective of this study was to compare the performance and accuracy of different methods to predict cash returns of agricultural companies in Tehran Stock Exchange.
Materials and Methods: The stock returns prediction models can be divided into two groups of statistical models and artificial intelligence. In this study, prediction accuracy was evaluated for linear (ARIMA and ARIMAX), non-linear (NAR and NARX) and hybrid models (ARIMA-ANN and ARIMAX-ANN) using monthly cash returns data over the period 2009(4)-2015(4) and according to the Diebold and Mariano test. ARIMA linear models have dominated many areas of time series forecasting. The linear function is based on three parametric linear components: auto regression (AR), integration (I), and moving average (MA). The ARIMA models also have the capability to include external independent or predictor variables. In this case, the model is a multivariate model and this model is represented as ARIMAX, where X represents the independent external. Artificial neural networks are capable of learning, generalizing, information parallel processing and error endurance. These attributes make the ANNs powerful in solving complex problems. Moreover, the ANN is able to adapt to the data pattern and relationship between the input and output, resulting in better prediction accuracy than the statistical method. The combined ARIMA(X)-ANN model is able to use the characteristics of both models simultaneously. Adding the explanatory variables, exchange rates, interest rates, inflation, oil prices and government spending, this study tried to answer the question whether performance prediction models improve significantly for linear, nonlinear and hybrid?
Results and Discussion: In this study, augmented Dicky Fuller tests (ADF), dickey fuller generalized least squares (DF-GLS), Phillips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were used to test the unit root. According to results, time series of cash returns was stationary. Next we estimated ARIMA (2,0,0) and ARIMAX (2,0,0) models. Based on the criteria of accuracy, the results showed that the ARIMAX model had a higher predicting accuracy compared to the ARIMA. In this study, two models were designed using artificial neural networks to predict cash returns. the first model only included the first and second lag of cash returns (infact, the first model was Nonlinear Autoregressive model (NAR)); in the second model, in addition to two lags of cash returns, the exchange rates, interest rates, inflation, oil prices and government spending variables were used as the network inputs (this pattern is known as Nonlinear Autoregressive with Exogenous Input (NARX Model)). We find that the performance and accuracy of Auto Regression artificial neural networks increases by adding explanatory variables. In this study also used the ARIMA-ANN and ARIMAX-ANN hybrid models, in order to consider the linear and nonlinear characteristics in the data. After running the hybrid models and predicting, the results indicate that ARIMA-ANN and ARIMAX-ANN hybrid models have better performance in comparison with linear models (ARIMA and ARIMA) and non-linear models (NAR and NARX). Another result shows that ARIMA-ANN model is more accurate compared to ARIMAX-ANN. Finally, we show that hybrid models have greater prediction accuracy according to the Diebold and Mariano test.
Conclusions: The results showed that the addition of external explanatory variables could improve the prediction accuracy in linear and nonlinear models and this improvement in performance was significant statistically. The results of the study revealed that making use of hybrid models increased prediction accuracy significantly. Therefore, researchers, companies and shareholders of stock exchange are suggested to use the hybrid models in their financial planning to forecast economic variables.

کلیدواژه‌ها [English]

  • Hybrid Models
  • prediction
  • Stock Market
  • ARIMAX
1-Abdalla I.S. and Murinde V. 1997. Exchange rate and stock price interactions in emerging financial markets: evidence on India, Korea, Pakistan and the Philippines, Applied Financial Economics, 7(1):25-35.
2- Abhishek K., Khairwa A., Pratap T. and Prakash S. 2012. A stock market prediction model using artificial neural network. In Computing Communication and Networking Technologies (ICCCNT), 2012 Third International Conference on (pp. 1-5). IEEE.
3- Adebiyi A.A., Adewumi A.O. and Ayo C.K. 2014. Comparison of ARIMA and artificial neural networks models for stock price prediction, Journal of Applied Mathematics, 2014: 1-7.
4- Areekul P., Senjyu, T., Toyama, H. and Yona A. 2010. Notice of violation of IEEE publication principles a hybrid ARIMA and neural network model for short-term price forecasting in deregulated market, in IEEE Transactions on Power Systems, 25(1):524-530.
5- Bildirici M. and Ersin, Ö.Ö. 2009. Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange, Expert Systems with Applications, 36(4):7355-7362.
6- Bodie Z. 1976. Common stocks as a hedge against inflation. The Journal of Finance, 31(2):459-470.
7- Choudhry T. 2001. Inflation and rates of return on stocks: evidence from high inflation countries, Journal of International Financial Markets, Institutions and Money, 11(1):75-96.
8- Co H.C. and Boosarawongse R. 2007. Forecasting Thailand’s rice export: Statistical techniques vs. artificial neural networks, Computers and Industrial Engineering, 53(4):610-627.
9- Dase R.K. and Pawar D.D. 2010. Application of artificial neural network for stock market predictions: A review of literature, International Journal of Machine Intelligence, 2(2):14-17.
10- De Oliveira F.A., Zarate L.E., de Azevedo Reis, M. and Nobre C.N. 2011. The use of artificial neural networks in the analysis and prediction of stock prices. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on (pp. 2151-2155). IEEE.
11- Diaz-Robles L.A., Ortega J.C., Fu J.S., Reed G.D., Chow J.C., Watson J.G. and Moncada-Herrera, J.A. 2008. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile, Atmospheric Environment, 42(35):8331-8340.
12- Dinenis E. and Staikouras S.K. 1998. Interest rate changes and common stock returns of financial institutions: evidence from the UK, The European Journal of Finance, 4(2):113-127.
13- Enke D., Grauer M. and Mehdiyev N. 2011. Stock market prediction with multiple regression, fuzzy type-2 clustering and neural networks, Procedia Computer Science, 6: 201-206.
14- Faruk D.Ö. 2010. A hybrid neural network and ARIMA model for water quality time series prediction, Engineering Applications of Artificial Intelligence, 23(4):586-594.
15- Filis G., Degiannakis S. and Floros C. 2011. Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries, International Review of Financial Analysis, 20(3):152-164.
16- Guresen E., Kayakutlu G. and Daim T.U. 2011. Using artificial neural network models in stock market index prediction, Expert Systems with Applications, 38(8):10389-10397.
17- Kihoro J.M. and Okango E.L. 2014. Stock market price prediction using artificial neural network: an application to the Kenyan equity bank share prices, Journal of Agriculture, Science and Technology, 16(1):161-172.
18- Mostafa M.M. 2010. Forecasting stock exchange movements using neural networks: Empirical evidence from Kuwait, Expert Systems with Applications, 37(9):6302-6309.
19- Neenwi S., Asagba P.O. and Kabari L.G. 2013. Predicting the Nigerian stock market using artificial neural network, Europ Journal of Computer Science Information, 1(1):30-39.
20- N'Zue F.F. 2006. Stock market development and economic growth: evidence from Cote D'Ivoire, African Development Review, 18(1):123-143.
21- Ruiz-Aguilar J.J., Turias I.J. and Jimenez-Come M.J. 2014. Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting, Transportation Research Part E: Logistics and Transportation Review, 67:1-13.
22- Suhendra I. and Anwar C.J. 2014. Determinants of Private Investment and the Effects on Economic Growth in Indonesia, Journal on Business Review (GBR), 3(3):128-133.
23- Tseng C.H., Cheng S.T., Wang Y.H. and Peng J.T. 2008. Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices, Physica A: Statistical Mechanics and its Applications, 387(13):3192-3200.
24- Tseng F.M., Yu H.C. and Tzeng G.H. 2002. Combining neural network model with seasonal time series ARIMA model, Technological Forecasting and Social Change, 69(1):71-87.
25- Vui C.S., Soon G.K., On C.K., Alfred R. and Anthony P. 2013. A review of stock market prediction with artificial neural network (ANN), In Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on (pp. 477-482). IEEE.
26- Wang J.Z., Wang J.J., Zhang Z.G. and Guo S.P. 2011. Forecasting stock indices with back propagation neural network, Expert Systems with Applications, 38(11):14346–14355.
27- Yetis Y., Kaplan H. and Jamshidi M. 2014. Stock market prediction by using artificial neural network, In World Automation Congress (WAC), 2014 (pp. 718-722). IEEE.
28- Zhang G.P. 2003. Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50:159-175.
29- Zhao H. 2010. Dynamic relationship between exchange rate and stock price: Evidence from China, Research in International Business and Finance, 24(2):103-112.
30- Zou H.F., Xia G.P., Yang F.T. and Wang H.Y. 2007. An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting, Neurocomputing, 70(16):2913-2923.
31- Zou L., Rose, L.C. and Pinfold J.F. 2007. Asymmetric information impacts: Evidence from the Australian treasury-bond futures market, Pacific Economic Review, 12(5):665-681.
CAPTCHA Image