تدوین الگوی منطقه ای کشت محصولات زراعی و باغی در استان اصفهان: رویکرد برنامه‌ریزی ساختاری چند هدفه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

2 استادیار پژوهش تحقیقات اقتصاد کشاورزی، دفتر امور اقتصادی سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

3 دانشگاه شیراز- دانشگاه زابل

4 دانشگاه زابل

چکیده

اهمیت و ضرورت برنامه‌ریزی منطقه‌ای کشت را می‌توان ناشی از لزوم استفاده بهینه از ظرفیت های تولید منطقه‌ای و ارائه راهکارهایی جهت نیل به توازن عرضه و تقاضا در تصمیم گیری‌ها و تخصیص منابع تولید کشاورزی دانست. مطالعه حاضر به معرفی الگوی فراگیر برنامه‌ریزی منطقه‌ای کشت محصولات کشاورزی پرداخته که یکی از زیر مجموعه‌های رویکرد برنامه‌ریزی ساختاری چند هدفه (MOSP) بوده و اهداف متفاوتی همچون اهداف اقتصادی، اجتماعی و زیست محیطی به صورت مجزا و توأم مورد توجه قرار گرفته است. محدوده مطالعاتی عبارت از اراضی قابل کشت زراعی و باغی در محدوده تقسیمات سیاسی-جغرافیائی 23 شهرستان واقع در استان اصفهان در سال 1393 بود. نتایج نشان داد که در گروه‌های اصلی غلات و علوفه کاهش محسوسی در سطح زیرکشت بهینه مدل چند هدفه به ترتیب به میزان 32 و 58 درصد رخ داده است. افزایش سطح زیرکشت گروه محصولات باغی به میزان 38 درصد در الگوی بهینه مدل چند هدفه از دیگر موارد مهم در تحلیل نتایج بود. در مجموع جهت نیل به اهداف اقتصادی، اجتماعی و زیست محیطی ذکر شده در این مطالعه در قالب یک برنامه‌ریزی چند هدفه کاهش 37 درصدی سطح زیرکشت در استان اصفهان اجتناب ناپذیر است. دست آوردهای این اقدام کاهش مصرف آب آبیاری به میزان 10 درصد، افزایش سود ناخالص به میزان 24 درصد و افزایش تولید به میزان 10 درصد می‌باشد. با توجه به اینکه در طرح برنامه‌ریزی ساختاری الگوی کشت اهدافی متفاوت و گاهاً متضاد مورد نظر بوده و ایجاد مصالحه بین اهداف مورد نظر در مدل برنامه‌ریزی ساختاری چند هدفه امکان پذیر است، لذا استفاده از آن برای تصمیم‌گیرندگان توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Codifying Regional Cropping Pattern of Agricultural and Horticultural Products in Isfahan Province: Multi-objective Structural Planning Approach

نویسندگان [English]

  • M. Mardani 1
  • A.R. Nikooie 2
  • S. Ziaee 3
  • M. Ahmadpour Borazjani 4
1 Khozestan
2 Tehran
3 Zabol University
4 Zabol University
چکیده [English]

Introduction: The importance and necessity of regional analysis of cropping pattern could be due to the need of regional balance and present strategies to achieve balance in decision making and allocation of agricultural production resources. The regional planning is a systematic attempt to choose the best available methods in order to achieve a specific goal in a region. Agriculture planning problems are important from both social and economic viewpoints. They involve a complex interaction of nature and economics. Due to the increase of population, there is always a need for more production to meet the ever increasing demand. One way of achieving high productivity is to increase the area under cultivation. Third -world countries like Iran losing land due to population growth. Agricultural planning problems in terms of social, environmental, and economic issues are important. Decision making in agriculture is generally complicated so that farmers are facing very often conflicting objectives. The scope of this paper is to design and implement a multi-objective mathematical programming model for Isfahan province that optimizes the production plan of agricultural regions taking into account the available resources. Application of the proposed model to the case study of the Isfahan province demonstrates the reliability and flexibility of the model.
Materials and Methods: In the formulation of the proposed model, set restrictions on irrigation water, production inputs (land, fertilizer, and etc.), and economic variables, as well as the minimum and maximum demand, are described. Also, the different objectives of economics (Gross margin maximization of agricultural activities), social (Maximizing the number of labor in agricultural production) and environmental (Minimizing the use of irrigation water and the cost of chemical fertilizers and pesticides) was considered. Fuzzy multi-objective linear programming model was used to solve the proposed model. As study regions, the information of 23 cities located in Isfahan province, Iran by providing questionnaires and statistical data are taken into account. To expand the potential use of the model, the model solution is compared with the existing crop plan of the study regions. Using Access and SQL server database software to manage and initial processing of data and GAMS software to solve the optimization model due to a large number of information, equations and variables used in the proposed model was inevitable. Some parameters also related to the topic of energy such as the total energy produced, the energy produced per hectare, and energy produced per unit of irrigation water are considered.
Results and Discussion: The cultivation regional planning model for Isfahan province was programmed in GAMS software. The importance of each of the objectives were summarized by Jehad-Keshavarzi organization experts of Isfahan province. The weights are 0.3, 0.05, 0.15, and 0.5 for maximizing gross margin, minimizing the use of irrigation water, maximizing the number of labor, and minimizing the cost of fertilizers and pesticides, respectively. The results showed that the main groups of cereals and for ages were reduced from all optimized models. According to the cropping pattern in the multi-objective programming model, two main groups of cereals and for ages have significantly reduced the crop pattern compared to the current and this reduction was32 and58percent, respectively. MOP model proposed reducing the irrigation water use by 10 percent, increase the gross margin by 24 percent, and increase the production by 10 percent. The total energy produced, the energy produced per hectare, and energy produced per unit of irrigation water reduced in all optimized models.
Conclusions: The objective of this study is to present a cultivation regional planning with the multi-objective model for optimal allocation of land under cultivation and proposes an annual agricultural plan for different crops. The output of our research may become a useful analytical tool for agricultural planners. In this study, we have been able to demonstrate that the multi-objective programming approach is a better technique over a single objective criterion when multiple conflicting objectives are involved. According to the results, the most limiting factor in cultivation regional planning is irrigation water. Also, the proposed model offers a reduction in the area under cultivation. So, using reduced irrigation water availability policies to reduce the total cultivated area is recommended. The reduction of energy produced in all optimized model can be a suitable research topic to add restrictions to the proposed model. Some cities like Najaf-abad (in the main groups of horticultural and pharmaceutical crops), Naein (in the main groups of Industrial crops), and Mobarakeh (in the main groups of kitchen garden) have the potential to expand the area under cultivation and can be adopted appropriate promotional activities in these cases.

کلیدواژه‌ها [English]

  • Irrigation water
  • Isfahan province
  • Multi-objective structural planning
  • Regional Planning
1- Bagheri M., and Moazezi F. 2010. Determining the cropping pattern:Application of possibility method. Journal of Agricultural Economics Research 2:38-44.
2- Bartel S., Janssen G. Underground spatial planning – Perspectives and current research in Germany. Tunnelling and Underground Space Technology.
3- Bartolini F., Bazzani GM., Gallerani V., Raggi M., and Viaggi D. 2007. The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural System 93:90-114.
4- Bender MJ., and Simonovic SP. 2000. A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets and Systems 115:35-44.
5- Berbel J., and Gomez-Limon JA. 2000. The impact of water-pricing policy in Spain: An analysis of three irrigated areas. Agricultural Water Management 43:219-38.
6- Berenger V., and Verdier-Chouchane A. 2007. Multidimensional measures of well-being: Standard of living quality of life across countries. World Development 35:1259- 76.
7- Biswas A., and Pal BB. 2005. Application of fuzzy goal programming technique to land use planning in agricultural system. Journal of Omega 33:391-8.
8- Chiappero ME. 1996. Standard of living evaluation based on Sen’s Approach: Some methodological suggestions. Notizie di Politeia 12: 37–53.
9- Cid-Garcia NM., Bravo-Lozano AG., and Rios-Solis YA. 2014. A crop planning and real-time irrigation method based on site-specific management zones and linear programming. Computers and Electronics in Agriculture 107:20-8.
10- De Koeijer TJ., Wossink GAA., Smitc AB., Janssens SRM., Renkema JA., and Struike PC. 2003. Assessment of the quality of farmers’ environmental management and its effects on resource use efficiency: a Dutch case study. Agricultural System 78:85-103.
11- Doppler W., Salman AZ., Al-Karablieh EK., and Wolf HP. 2002. The impact of water price strategies on the allocation of irrigation water: the case of the Jordan Valley. Agricultural Water Management 55:171-82
12- Fathi F., and Zibaei M. 2012. Water Resources Sustainability using Goal Programming Approach in optimizing Crop Pattern, Strategy and Irrigation Method. Iran-Water Resources Research 8:10-9.
13- Francesch-Huidobro M., Dabrowski M., Tai Y., Chan F., and Stead D. Governance challenges of flood-prone delta cities: Integrating flood risk management and climate change in spatial planning. Progress in Planning.
14- Francisco SR., and Mubarik A. 2006. Resource allocation tradeoffs in Manila's peri-urban vegetable production systems: An application of multiple objective programming. Agricultural System 87:147–68.
15- GAMS/CONOPT3. 2010. Bagsvaerdvej 246A, DK-2880 Bagsvaerd, Denmark: ARKI Consulting and Development .
16- Gohar AA., and Ward FA. 2010. Gains from expanded irrigation water trading in Egypt: An integrated basin approach. Ecological Economics 69:2535-48.
17- Governor of Isfahan Province. 2014. Trans-sectional studies of water resources in land use planning and preparing the development plan of the Isfahan province.
18- Jehad-Keshavarzi Organization. 2013. Office of Statistics and Information Technology unpublished results.
19- Jones D., and Barnes EM. 2000. Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Agricultural Systems 56:137–58.
20- Joulaei R., Azar A., and Chizari H. 2005. Several regional planning models and its application in agriculture, Case Study of Fars Province. Agriculture economics and development 13:87-125.
21- Karami E. 2006. Appropriateness of farmers’ adoption of irrigation methods: The application of the AHP model. Agricultural Systems 87:101-19.
22- Kemal SF., and Altin M. 2004. Irrigation scheduling and optimum cropping pattern with adequate and deficit water supply for mid-size farm of Harran Plain. Pakistan Journal of Biological Sciences 8:1414-8.
23- Kumar B. 1995. Trade-off between Return and Risk in Farm Planning: MOTAD and Target MOTAD Approach. Indian Journal of Agricultural Economics 50:193-9.
24- Latinopoulos D., and Mylopoulos Y. 2005. Optimal allocation of land and water resources in irrigated agriculture by means of goal programming: Application in Loudias River basin. Global Nest Journal 7:264-73.
25- Majidi N., Alizade A., and Ghorbani M. 2011. Determining The Optimum Cropping Pattern In Same Direction With Water Resources Management Of Mashhad-CHenaran Plain. Journal of Water and Soil 25:776-85.
26- Maneta MP., Torres M., Wallender WW., Vosti S., and Kirby M. 2009. Water demand and flows in the Sao Francisco River Basin (Brazil) with increased irrigation. Agricultural Water Management 96:1191-200.
27- Manos B., Papathanasiou J., Bournaris T., and Voudouris K. 2010. A multicriteria model for planning agricultural regions within a context of groundwater rational management. Journal of Environmental Management 91:1593-600.
28- Mardani M., Babaei M., Sabouhi M., and Asemani E. 2013. Determine the optimal cropping pattern using fuzzy goal programming Case Study in Khorasan Razavi province. Journal of Operations Research and Applications 36:66-74.
29- Meyer A., Estrella R., Jacxsens P., Deckers J., Rompaey A., and Orshoven J. 2013. A conceptual framework and its software implementation to generate spatial decision support systems for land use planning. Land Use Policy 35:271-82.
30- MihanKhah N., Chizari A., and Khalilian S. 2012. Determination of Optimal Extraction from Kor River Environmental Flow, Doroudzan dam. Journal of Agricultural Economics and Development (Agricultural Sciences And Technology) 3:415-24.
31- Mirzavand M., and Imani R. 2016. Determining the Optimal Cropping Pattern Based on Virtual Water Concept and Economic Profitability for Water Crisis Prevention:A Case Study of Kashan Plain, Isfahan Province, Iran. International Bulletin of Water Resources and Development 3:51-9.
32- Mousavi N., and Akbari MR. 2014. Surveying optimal cropping pattern and its impact on water resources management case study Marvdasht-Karbala. Water Resources Engineering 22:101-10.
33- Nikouei A., and Ward FA. 2013. Pricing irrigation water for drought adaptation in Iran. Journal of Hydrology 503:29-46.
34- Pulido-Velazquez M., Andreu J., and Sahuquillo A. 2006. Economic Optimization of Conjunctive Use of Surface Water and Groundwater at the Basin Scale. Journal of Water Resources Planning and Management 132: 454-67.
35- Sabouhi M., and Mardani M. 2013. Application of Robust Optimization Approach for Agricultural Water Resource Management under Uncertainty. Journal of Irrigation And Drainage Engineering 139:571-81.
36- Sakhdari H., and Sabouhi M. 2012. Application of Meta-Goal Programming in determining the optimal cropping pattern, Case study: Neyshabor city. Journal of Agricultural Economics and Development (Agricultural Sciences And Technology) 26:150-8.
37- Sherbiny N., and Zaki M. 1974. Programming for agricultural development: The case of Egypt. American Journal of Agricultural Economics 74:114-21.
38- Suresh KR., and Mujumdar PP. 2004. A fuzzy risk approach for performance evaluation of an irrigation reservoir system. Agricultural Water Management 69:159-77.
39- Ten Berge HFM., Van Ittersum MK., Rossing WAH., Van de Ven GWJ., Schans J., and Sanden PACM. 2000. Farming options for The Netherlands explored by multi-objective modeling. European Journal of Agronomy 13:263–77.
40- Ward FA. 2007. Decision support for water policy: a review of economic concepts and tools. Water Policy 9:1-31.
41- Ward FA., and Lynch TP. 1996. Integrated river basin optimization: modeling economic and hydrologic interdependence. Water Resources Bulletin 32:1127-37.
42- Zoppi C., and Lai S. 2015. Determinants of land take at the regional scale: a study concerning Sardinia (Italy). Environmental Impact Assessment Review 55:1-10.
CAPTCHA Image