ارزیابی اثرات اقتصادی تغییرات کمیت و کیفیت آب آبیاری بر کشاورزی استان کرمان

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زابل

2 گروه اقتصاد کشاورزی، دانشگاه زابل، زابل، ایران

3 دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

4 دانشگاه شیراز- دانشگاه زابل

چکیده

در مطالعه­ی حاضر به تحلیل اقتصادی اثرات تغییرات کمی و کیفی آب در قالب سناریوهای مختلف بر مفاهیمی همچون عملکرد، الگوی کشت، بهره­وری آب و سود ناخالص کشاورزان در سال 97-1396 در شهرستان­های عمده استان کرمان شامل رفسنجان، سیرجان، کرمان، انار، زرند و بردسیر پرداخته شده است. در این راستا، اثر افزایش شوری خاک بر عملکرد محصولات مختلف و اثر همزمان تغییرات کمی و کیفی آب بر سایر شاخص­های ذکر شده با لحاظ تابع تولید محصول-آب-شوری در الگوی برنامه­ریزی ریاضی مثبت انجام شده است. نتایج اعمال سناریوی افزایش یک واحد شوری خاک نشان داد که بیشترین کاهش عملکرد مربوط به محصولات کلزا و سیب زمینی به‌ترتیب 13 و 12 درصد و کمترین میزان کاهش عملکرد مربوط به محصولات پسته و جو به میزان 5 درصد است. کمترین و بیشترین میزان کاهش سطح زیر کشت در اثر کاهش کیفیت و کمیّت منابع آب نیز به‌ترتیب مربوط به مناطق کرمان و رفسنجان است. همچنین، برای تمامی مناطق، افزایش یک واحد شوری بیشترین تأثیر منفی بر بهره­وری اقتصادی مصرف آب دارد. افزون‌براین، کاهش کیفیت منابع آب ناشی از افزایش شوری، پسته­کاران را در جهت کشت کمتر محصول پسته ترغیب کرده که این امر باعث کاهش بازده برنامه­ای آن­ها می­شود. با توجه به اثرات منفی کاهش کیفیت و کمیّت منابع آب بر بهره­وری اقتصادی و مدیریت منابع آب به‌خصوص در منطقه پسته­خیز رفسنجان لزوم توجه به ابزارهای بهبود بهره­وری اقتصادی از جمله استفاده از سامانه­های نوین آبیاری و یا راهکارهای اصلاح الگوی کشت و بیمه محصولات در جهت بهبود بازده برنامه­ای می­تواند مؤثر واقع شود.

کلیدواژه‌ها


1- Abbasnejad A., and Shahidasht A. 2013. Vulnerability of Sirjan Plain Due to Aquifer over Abstraction. Geography and Territorial Spatial Arrangement 7: 85-96. (In Persian)
2- Agricultural Jihad of Kerman. 2015. Statistical Yearbook of Agriculture Department of Kerman Province. (In Persian)
3- Bakhshi A., Moghaddsi R., and Daneshvar Kakhki M. 2012. An Application of Positive Mathematical Programming Model to Analyze the Effects of Alternative Policies to Water Pricing in Mashhad Plain. Journal of Economics and Agricultural Development 25: 284-294. (In Persian)
4- Boostani F., Mohammadi H., and Moindini Z. 2014. Consequences to irrigation groundwater price and quotas policies in Fars province (positive mathematical programming approach corrected). Water Engineering 7: 65-78. (In Persian)
5- Connor J.D., Schwabe K., King D., and Knapp K. 2012. Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecological Economics 77: 149-157.
6- Cortignani R., and Severini S. 2009. Modeling farm-level adoption deficit irrigation using positive mathematical programming. Agricultural Water Management 96(12): 1785-1791.
7- Cortignani R., and Severini S. 2009. Modeling farm-level adoption deficit irrigation using positive mathematical programming, Agricultural Water Management. Agricultural Water Management 96(12): 1785-1791.
8- Dehghani M., Tadayon Nejad M., and Feizi M. 2013. The effect of quality and irrigation interval on wheat yield and some of its components. Journal of Water Research in Agriculture 27(2): 127-135. (In Persian)
9- Delavar M., Morid S., and Moghadasi M. 2015. Optimization of Water Allocation in Irrigation Networks Considering Water Quantity and Quality Constrains, Case Study: Zayandehroud Irrigation Networks. Iran- Water Resources Research 11(2): 83-96. (In Persian)
10- Ebrahimiyan S., Nohtani M., and Sadeghi Mazidi H. 2013. Investigating the Barriers to Implementing Optimal Water Resources Management in Iran's Agricultural System for Sustainable Development. Proceedings of the First National Conference on Challenges on Water Resources and Agriculture. Iranian Association of Irrigation and Drainage, Esfahan. (In Persian)
11- Gulen H., Turhan E., and Eris A. 2006. Changes in peroxidase activities and soluble proteins in strawberry varieties under salt stress. Acta Physiol. Plant 28(2): 109-116.
12- Hasanvand V., Hasanvand M., Joulaie R., and Shirani Bidabadi F. 2015. Simulation of Farmers Behavior towards Applying Water Reduction Policies on Cropping Patterns Using Positive Mathematical Programming (PMP). Village and Development 17(4): 71-92. (In Persian)
13- Heckelei T. 2002. Calibration and estimation of programming models for agricultural supply analysis. University of Bonn.
14- Howitt R.E. 1995a. A Calibration Method for Agricultural Economic Production Models. Journal of Agricultural Economics 46(2): 147-159.
15- Howitt R.E. 1995b. Positive mathematical programming. American Journal of Agricultural Economics 77(2): 329-342.
16- Howitt R.E., Medellin-Azuara J., MacEwan D., and Lund J.R. 2012. Calibrating disaggregate economic models of agricultural production and water management. Environmental Modelling & Software 38: 244-258.
17- Jafary F., and Bradley C. 2018. Groundwater irrigation management and the existing challenges from the farmers’ perspective in central Iran. Land 7(1): 15.
18- Justice A., Mostafa Zadeh Farad B., Feizi M., and Landy A. 2013. Impact of salinity of irrigation water and soil leaching on soybean yield. Isfahan University of Technology, Isfahan, M.Sc Thesis.
19- Kan I., Schwabe K.A., and Knapp K.C. 2002. Microeconomics of irrigation with saline water. Journal of Agricultural and Resource Economics 16-39.
20- Katerji N., Van Hoorn J., Hamdy A., and Mastrorilli M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management 62(1): 37-66.
21- Khaghani, R., mahmoodi, S. H., Pazira, E. and Masihabadi, M. 2012. Investigation of Soil Salinity Changes and its Impact on Yield of Major Crops in Qazvin Plain. Crop Production under Environmental Stress 4(3): 27-37. (In Persian)
22- Kiani A.R., and Abbasi F. 2009. Assessment of the water-salinity crop production function of wheat using experimental data of the golestan province, Iran. Irrig and Drain (58): 445–455.
23- Letey J., Dinar A. and Knapp K.C. 1985. Crop-water production function model for saline irrigation waters. Soil Science Society of America Journal 49(4): 1005-1009.
24- Levidow L., Zaccaria D., Maia R., Vivas E., Todorovic M. and Scardigno, A. 2014.Improving water-efficient irrigation: prospects and difficulties of innovativepractices. Agric. Water Manage 146: 84–94.
25- Mardani M., Ziaei S., Nikouei A.R., and Ahmadpour M. 2016. Designing a Crop Pattern Decision Support System in Isfahan Province: A Multi-Purpose Crop Regional Planning Approach. University of Zabol, Zabul, PhD dissertation. (In Persian)
26- Mohseni A., and Zibaei M. 2009. Analysing Consequences of Increasing Acreage of Colza in Namdan Plain of Fars Province: An Application of Positive Mathematical Programming. JWSS. 13(47):773-784. (In Persian)
27- Nikouei A.R., Torkamani J., and Mamanpoush A.R. 2010. Water Use Management at Different Salinity Level to Release Multi-Objectives of Farmers in Zayandeh Rud Basin. Quarterly Iranian Journal of Irrigation and Drainage 4: 143-155. (In Persian)
28- Ors S., and Suarez D.L. 2017. Spinach biomass yield and physiological response to interactive salinity and water stress. Agricultural Water Management, 190: 31-41.
29- Paris Q. 2001. Symmetric positive equilibrium problem: a framework for rationalizing economic behavior with limited information. American Journal of Agricultural Economics 83(4): 1049-1061.
30- Paris Q. and Howitt R.E. 1998. An analysis of ill-posed production problems using maximum entropy. American journal of agricultural economics 80(1): 124-138.
31- Pirasteh-Anosheh H., Emam Y. and Sepaskhah A.R. 2015. Improving barley performance by proper foliar applied salicylic-acid under saline conditions. Int. J. Plant Prod 9: 467-486. (In Persian)
32- Piri, H., Ansari, H. and Parsa, M. 2016. Investigation of interactions between different irrigation and salinity levels on yield and components of forage sorghum by determining water and salinity production function in subsurface drip irrigation system. Ferdowsi University of Mashhad, Mashhad, Ph.D dissertation.
33- Pistachio Research Institute. 2013. Final Reports of Pistachio Research Institute. (In Persian)
34- Regional Water Company of Kerman. 2016. Water Resources Studies, Plain Reports of Kerman Province. (In Persian)
35- Schwabe K.A., Kan I. and Knapp K.C. 2006. Drainwater management for salinity mitigation in irrigated agriculture. American Journal of Agricultural Economics 88(1): 133-149.
36- Shirmohammadi-Ali Akbarkhani, Z., Ansari, H., Alizadeh, A. and enough, M. 2013. Evaluation of water-salinity-yield production functions in forage maize in Khorasan Razavi province. Iranian Journal of Irrigation and Drainage 4(7): 543-535. (In Persian)
37- Singh A., Panda S. N. 2013. Optimization and simulation modelling for managingthe problems of water resources. Water Resour. Manage 27(9): 3421–3431.
38- Singh, R. 2004. Simulations on direct and cyclic use of saline waters for sustaining cotton–wheat in a semi-arid area of north-west India. Agricultural Water Management, 66(2): 153-162.
39- Van Genuchten M. T. 1986. A numerical model for water and solute movement in and below the root zone. Model description and user manual. Unpubl. Res. Rep. US Salinity Lab. USDA/ARS, Riverside, Calif.
40- Van Genuchten M.T., and Hoffman G. 1984. Analysis of crop salt tolerance data. Ecological Studies: analysis and synthesis.
41- Ward, F.A. 2014. Economic impacts on irrigated agriculture of water conservation programs in drought. Journal of hydrology, 508: 114-127.
42- World Bank. 2010. World Development Indicators,. Available at: www.worldbank.org/.
CAPTCHA Image