پیشنهاد یک مدل برنامه‌ریزی ریاضی چند هدفه با رویکرد همبست آب- غذا - انرژی برای تولید محصولات زراعی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه اقتصاد کشاورزی، دانشگاه زابل

2 گروه اقتصاد کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

با افزایش رشد جمعیت و تنوع رژیم­های غذایی، تقاضای غذا و به دنبال آن تقاضای آب و انرژی برای تولید غذا دچار تغییر و تحول شده است. رویکرد همبست آب- غذا- انرژی یک چشم‌انداز کلی از پایداری است که تلاش می‌کند تا تعادل میان اهداف مختلف، منافع و نیازهای جوامع و محیط‌زیست را براساس کمی‌سازی روابط آب- غذا- انرژی از طریق مدل‌سازی‌های کیفی و کمی و همچنین پیشبرد تحقیقات برای مدل‌سازی یکپارچه و مدیریت برای ارائه استراتژی‌های مهم توسعه پایدار در جهان پویا و پیچیده امروز را برقرار سازد. لذا پژوهش حاضر با هدف جلوگیری از ارائه و اجرای سیاست­های نامناسب و تک­بعدی در تولید محصولات زراعی، به ارائه یک مدل برنامه­ریزی ریاضی چند هدفه با استفاده از رویکرد همبست آب- غذا- انرژی پرداخته است. این مدل در محدوده مطالعاتی مشهد در استان خراسان رضوی بکار گرفته و اهداف متفاوتی از جمله حداکثرسازی سودکشاورزان و انرژی حاصل از تولید موادغذایی (کالری) و حداقل‌سازی مصرف کود و سم، انرژی، انتشار گازهای گلخانه­ای، آب­آبیاری برای سال زراعی 99-1398 در نظر گرفته شده است. با بکارگیری رویکرد همبست در انتخاب سطح زیرکشت محصولات زراعی محدوده مطالعاتی مشهد، سطح زیرکشت در الگوی بهینه 38/48 درصد، مصرف آب­آبیاری 25 درصد، انرژی 11/53 درصد و میزان تولید کالری محصولات 33 درصد، مقدار مصرف سم و کود 3/38 درصد، هزینه­های تولید 8/60 درصد، انتشار گازهای گلخانه­ای 40 درصد، مصرف سوخت دیزل 4/38 درصد و تولید کل 33 درصد در الگوی چندهدفه برای محدوده مطالعاتی مشهد کاهش و سود خالص کشاورزان 3/49 درصد افزایش یافته است. بنابراین می­توان نتیجه گرفت که هرچند با در نظر گرفتن یک حوزه از حوزه­های آب- غذا- انرژی بصورت مجزا اثرات تک­بعدی هر یک از سیاست­ها در بخش­کشاورزی منعکس می­شود، اما با استناد به تنها یک حوزه نمی­توان در مورد اثربخشی سایر سیاست­ها تصمیم­گیری قطعی نمود. در مجموع در راستای تأمین امنیت­غذایی با استفاده از همبست آب- غذا- انرژی بایستی مناطق مناسب برای کشت محصولات خاص در محدوده مطالعاتی مشهد شناسایی شود. در نهایت الگوهای کشت بهینه پیشنهادی که بر مبنای مدیریت صحیح منابع آب، انرژی، افزایش راندمان اقتصادی محصولات کشاورزی و حفاظت زیست­محیطی تهیه شده به طور کامل اجرا شود.

کلیدواژه‌ها

موضوعات


  1.  

    1. Agricultural Jihad Organization. (2020). Unpublished result, Khorasan Razavi.
    2. Azamirad, M., Ghahreman, B., & Esmaili, K. (2018). Investigation flooding potential in the Kashafrud watershed, Mashhad the method SCS and GIS. Journal of Watershed Management Research 9(17): 26-38. (In Persian with English abstract)
    3. Bagheri, (2018). Water resources management with water, energy and food linkage approach. The first international conference on water consumption management, demand and efficiency. (In Persian with English abstract)
    4. Buysse, , Van Huylenbroeck, G., & Lauwers, L. (2007). Normative, Positive and Econometric Mathematical Programming as Tools for Incorporation of Multifunctionality in Agricultural Policy Modelling. Agriculture, Ecosystems & Environment 120: 70-81. https://doi .org /10.1016/j.agee.2006.03.035.
    5. Chai, , Shi H., Lu Q., & Hu, Y. (2020). Quantifying and predicting the Water-Energy-Food-Economy-Society-Environment Nexus based on Bayesian networks - A case study of China. Journal of Cleaner Production, 256: 120266. DOI: https://doi .org/ 10 .1016 /j.jc lepro .2020. 120266
    6. Chiun, L.P., & Hwong, W. (2020). Evaluating the environmental impacts of the water-energy-food nexus with a life-cycle approach. Resources, Conservation and Recycling 157: 104789. https://doi.org/10.1016/j.resconrec.2020.104789.
    7. Davari, , Shahedi, M., Talebi, F., Khazaei, S., Omranian, H., Fakhar, M., & Majidi, N. (2016). Water book of Khorasan Razavi province, Hedro Tak Tuse Mashhad.
    8. Emamzadeh, M., Forghani, M.A., Karnema, A., & Darbandi S. (2016). Determining an optimum pattern of mixed planting from organic and non-organic crops with regard to economic and environmental indicators: A case study of cucumber in Kerman, Iran. Information Processing in Agriculture 3(4): 207-214. https://doi.org/10.1016/j.inpa.2016.08.001.
    9. Esteve, P., Varela-Ortega, C., Blanco-Gutiérrez, I., & Downing, T.E. (2015). A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics 120: 49-58. https:// doi. Org /10. 101 6/ j. ecolecon .2015.09.017.
    10. Esmaeilzadeh, S., Asgharipour, M.R., & Khoshnevisan, B. (2020). Water footprint and life cycle assessment of edible onion production-A case study in Iran. Scientia Horticulturae 261: 108925. https://doi.org/10.1016/j.inpa.2016.08.001.
    11. Eslami, Z., Janatrostami, S., & Ashrafzadeh, A. (2019). Application of modeling in management of water, energy, and food Nexus, Journal of Water and Sustainable Development 6(2): 1-8. (In Persian with English abstract)
    12. Fabiani, , Vanino, S., Napoli, R., & Nino, P. (2020). Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy. Environmental Science & Policy 104: 1-12. https://doi .org/10 .10 16/j. envsci.2019.10.008.
    13. Hoff, H. (2011). Understanding the NEXUS. Background paper for the Bonn, nexus conference: The water, energy and food security nexus solutions for the green economy. Stockholm Environment Institute, Stockholm.
    14. Kalbali, E., Ziaee, S., Mardani Najafabadi, M., & Zakerinia, M. (2021). Approaches to adapting to -impacts of climate change in northern Iran: The application of a Hydrogy-Economics model. Journal of Cleaner Production 280: Part 1, 124067. https://doi.org/10.1016 /j.jclepro .2020.124067.
    15. Karabulut, A.A., Crenna, E., Sala, S., & Udias, A. (2018). A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. Journal of Cleaner Production 172: 3874-3889. https://doi.org/10.1016/j.jclepro.2017.05.092.
    16. Keyhanpour, M.J., Mousavi-Jahromi, S.H., & Ebrahimi, H. (2021). Dynamic analysis of sustainable water resources management based on water-food-energy Nexus case study: Khuzestan province, Iranian Journal of Irrigation and Drainage 3(15): 567-581. (In Persian with English abstract). https://doi.org/20.1001.1.20087942.1400.15.3.8.2.
    17. Mardani Najafabadi, M., Ziaee, S., Nikouei, A., & Borazjani, M.A. 2019. Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study. Agricultural Systems, 173: 218-232. DOI:  https://doi.org/10. 1016/j.agsy.2019.02.006
    18. Mirabi, , & Krabi, M. (2019). Integrated modeling in the optimal management of water, energy and food resources with a correlated approach, 11th National Congress of Civil Engineering, Shiraz. (In Persian with English abstract)
    19. Mo, li., Qiang, F., Vijay, P.S., Yi, j., Dong, L., Chenglong, Z., & Tianxiao, L. (2019). An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Science of the Total Environment 651: 1416-1434. https://doi.org/10.1016/j. scitotenv.2018.09.291.
    20. Monem, J., Delavar, M., & Hosseini, S.M. (2019). Application and evaluation of water, food and energy (NEXUS) in irrigation Networks management: case study of Zayandehrud irrigation Network, Iranian Journal of Irrigation and Drainage 1(14): 275-285. (In Persian with English abstract)
    21. Marzban, , Asgharepour, M.R., Ghanbari, A., Nikouei, A.R., Ramroudi, M., & Seyed Abadi, E. (2020). Reducing environmental effects by redesigning the cultivation pattern with the approach of using cycle assessment Life and Multipurpose Planning (Case Study: East of Lorestan Province), Scientific knowledge of Agricultural Knowledge and Sustainable Production 30(3): 311-330. (In Persian with English abstract)
    22. Nie, , Avraamidouc, S., Xiaoa, X., Efstratios, N. P., Jie, L., Yujiao, Z., Fei, S., Jie, Y., & Min, Z. (2019). A Food-Energy-Water Nexus approach for land use optimization. Science of the Total Environment 659: 7-19. https://doi .org /10.1016 /j. scitotenv.2018.12.242.
    23. Pu, Y., Sang-Hyun, L., Jin, Y.C., Seung-Hwan, Y., & Seung-Oh, H. (2022). Analysis of climate change impact on resource intensity and carbon emissions in protected farming systems using Water-Energy-Food-Carbon Nexus, Resources, Conservation & Recycling 184: 106394. https://doi.org/10.1016/j.resconrec.2022.106394.
    24. Qin, J., Duan, W., Chen, Y., Dukhovny, V.A., Sorokin, D., Li, Y., & Wang, X. (2022). Comprehensiveevaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renewable and Sustainable Energy Reviews 157: 112061. https://doi.org/10 .10 16/j.rser.2021.112061.
    25. Report on integrated management of water resources in Kashfarud Basin‎. 2009.
    26. Sharifi Moghadam, E., & Sadeghi, S.H.R. (2018). Application of Water-Energy-Food Correlation in Water Resources Management, the First National Conference on Water Resources Management Strategies and Environmental Challenges. (In Persian with English abstract)
    27. Safaei, V., Pourmohammad, Y., & Davari, K. (2020). Interconnected Approach to Water, Energy and Food in Water Resources Management (Case Study: Mashhad Area), Iranian Journal of Irrigation and Drainage 5(14): 1721-1708. (In Persian with English abstract)
    28. Safavi, , & Ehteshami, M. (2022). Modeling the correlation approach of water, energy and food and evaluating its social and environmental sustainability (Case study: Varamin city). Scientific Journal of Hydroelectric Dam and Power Plant 8(28): 101-80. (In Persian with English abstract)
    29. Tichenor, E., Van Zanten, H.H., de Boer, I.J., Peters, C.J., Carthy, A.C., & Griffin T.S. (2017). Land use efficiency of beef systems in the Northeastern USA from a food supply perspective. Agricultural Systems 156: 34-42. https://doi.org /10.1016/j.agsy .2017. 05 .011.
    30. Wicaksono, A., & Kang D. (2019). Nationwide simulation of water, energy, and food nexus: Case study in South Korea and Indonesia. Journal of Hydro-environment Research 22: 70-87. https://doi.org/10.1016/jher.2018.10.003.
    31. West, (2019). Multi-criteria evolutionary algorithm optimization for horticulture crop management. Agricultural Systems 173: 469-481. https://doi.org/10.1016/j.agsy. 2019. 03.016.
    32. Yu, L., Xiao, Y., Zeng, X.T., Li, Y.P., Fan, Y.R. (2020). Planning water-energy-food nexus system management under multi-level and uncertainty. Journal of Cleaner Production 251: 119658. https://doi.org/10.1016/j.jclepro.2019.119658.
    33. Zhang, , & Vesselinov, V.V. (2018). Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources 101: 1–10. https://doi.org/10. 1016/j.intimp.2017.10.002.

     

CAPTCHA Image